Yes, the leading coefficient of a polynomial function can be a fraction. A polynomial is defined as a sum of terms, each consisting of a coefficient (which can be any real number, including fractions) multiplied by a variable raised to a non-negative integer power. Thus, the leading coefficient, which is the coefficient of the term with the highest degree, can indeed be a fraction.
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
The leading term in a polynomial is the term with the highest degree, which determines the polynomial's end behavior and its classification (e.g., linear, quadratic, cubic). It is typically expressed in the form ( ax^n ), where ( a ) is a non-zero coefficient and ( n ) is a non-negative integer. The leading term is crucial for understanding the polynomial's growth as the input values become very large or very small.
Not quite. The point at infinity cannot be regarded as a maximum since the value will continue to increase asymptotically. As a result no polynomial of odd degree can have a maximum. Only polynomials of an even degree whose leading coefficient is negative will have a global maximum.
what is the leading coefficient -3x+8
Leading coefficient: Negative. Order: Any even integer.
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
TRue
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
the left end of the graph is going in a positive direction and the right end is going in a negative direction.
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
There cannot be such a polynomial. If a polynomial has rational coefficients, then any complex roots must come in conjugate pairs. In this case the conjugate for 2-3i is not a root. Consequently, either (a) the function is not a polynomial, or (b) it does not have rational coefficients, or (c) 2 - 3i is not a root (nor any other complex number), or (d) there are other roots that have not been mentioned. In the last case, the polynomial could have any number of additional (unlisted) roots and is therefore indeterminate.
Identify the degree and leading coefficient of polynomial functions. ... the bird problem, we need to understand a specific type of function. A power ... A power function is a function that can be represented in the form ... Example 3.4.1: Identifying Power Functions ... Comparing Smooth and Continuous Graphs.
N i g g e r s
Not quite. The point at infinity cannot be regarded as a maximum since the value will continue to increase asymptotically. As a result no polynomial of odd degree can have a maximum. Only polynomials of an even degree whose leading coefficient is negative will have a global maximum.
)the answer is the left end of the graph of the function goes up and the right goes down, 2)it has 5 zeros and at most 4 relative maximums and minimums, 3)and it is a reflection and a translation to the left of the parent function.