what is the leading coefficient -3x+8
The answer depends on the what the leading coefficient is of!
The difference depends on what m and n equal. If they are both variable then it dpends on what the equations are for each variable.
Not quite. The point at infinity cannot be regarded as a maximum since the value will continue to increase asymptotically. As a result no polynomial of odd degree can have a maximum. Only polynomials of an even degree whose leading coefficient is negative will have a global maximum.
No.
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
TRue
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
Leading coefficient: Negative. Order: Any even integer.
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
There cannot be such a polynomial. If a polynomial has rational coefficients, then any complex roots must come in conjugate pairs. In this case the conjugate for 2-3i is not a root. Consequently, either (a) the function is not a polynomial, or (b) it does not have rational coefficients, or (c) 2 - 3i is not a root (nor any other complex number), or (d) there are other roots that have not been mentioned. In the last case, the polynomial could have any number of additional (unlisted) roots and is therefore indeterminate.
Identify the degree and leading coefficient of polynomial functions. ... the bird problem, we need to understand a specific type of function. A power ... A power function is a function that can be represented in the form ... Example 3.4.1: Identifying Power Functions ... Comparing Smooth and Continuous Graphs.
N i g g e r s
t^5 +9t^4 -5t +6; 1
what is the leading coefficient -3x+8
The answer depends on the what the leading coefficient is of!