Yes, the leading coefficient of a polynomial function can be a fraction. A polynomial is defined as a sum of terms, each consisting of a coefficient (which can be any real number, including fractions) multiplied by a variable raised to a non-negative integer power. Thus, the leading coefficient, which is the coefficient of the term with the highest degree, can indeed be a fraction.
A polynomial with integer coefficients and a leading coefficient of 1 is called a monic polynomial. An example of such a polynomial is ( f(x) = x^3 - 4x^2 + 6x - 2 ). In this polynomial, all coefficients are integers, and the leading term ( x^3 ) has a coefficient of 1.
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
The polynomial can be rewritten as (-4x^3 - 45x^2 + 9x). The degree of the polynomial is 3, which is determined by the highest exponent of (x). The leading coefficient, which is the coefficient of the term with the highest degree, is (-4).
If a polynomial function has an even degree and a negative leading coefficient, the ends of the graph will both point downward. This means that as the input values approach positive or negative infinity, the output values will also approach negative infinity. In summary, the graph will have a "U" shape that opens downwards.
The leading term in a polynomial is the term with the highest degree, which determines the polynomial's end behavior and its classification (e.g., linear, quadratic, cubic). It is typically expressed in the form ( ax^n ), where ( a ) is a non-zero coefficient and ( n ) is a non-negative integer. The leading term is crucial for understanding the polynomial's growth as the input values become very large or very small.
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
TRue
A polynomial with integer coefficients and a leading coefficient of 1 is called a monic polynomial. An example of such a polynomial is ( f(x) = x^3 - 4x^2 + 6x - 2 ). In this polynomial, all coefficients are integers, and the leading term ( x^3 ) has a coefficient of 1.
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
The polynomial can be rewritten as (-4x^3 - 45x^2 + 9x). The degree of the polynomial is 3, which is determined by the highest exponent of (x). The leading coefficient, which is the coefficient of the term with the highest degree, is (-4).
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
Leading coefficient: Negative. Order: Any even integer.
The leading term in a polynomial is the term with the highest degree, which determines the polynomial's end behavior and its classification (e.g., linear, quadratic, cubic). It is typically expressed in the form ( ax^n ), where ( a ) is a non-zero coefficient and ( n ) is a non-negative integer. The leading term is crucial for understanding the polynomial's growth as the input values become very large or very small.
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
The expression (2X^2 - 7X - 4) is a quadratic polynomial in the variable (X). It represents a parabolic function when graphed, with a leading coefficient of 2 indicating that the parabola opens upwards. The roots of this polynomial can be found using the quadratic formula, and it can also be factored if possible.
There cannot be such a polynomial. If a polynomial has rational coefficients, then any complex roots must come in conjugate pairs. In this case the conjugate for 2-3i is not a root. Consequently, either (a) the function is not a polynomial, or (b) it does not have rational coefficients, or (c) 2 - 3i is not a root (nor any other complex number), or (d) there are other roots that have not been mentioned. In the last case, the polynomial could have any number of additional (unlisted) roots and is therefore indeterminate.