It discriminates between the conditions in which a quadratic equation has 0, 1 or 2 real roots.
The discriminant must be a perfect square or a square of a rational number.
In that case, the discriminant is not a perfect square.
If the discriminant of a quadratic equation is positive, it indicates that the equation has two distinct real roots. This means that the graph of the equation intersects the x-axis at two points. A positive discriminant also suggests that the solutions are not repeated and that the parabola opens either upward or downward, depending on the leading coefficient.
There are two complex solutions.
It has one real solution.
It will then have 2 different roots If the discriminant is zero than it will have have 2 equal roots
a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.
It discriminates between the conditions in which a quadratic equation has 0, 1 or 2 real roots.
The discriminant must be a perfect square or a square of a rational number.
The equation must be written in the form ( ax^2 + bx + c = 0 ), where ( a \neq 0 ). This is the standard form of a quadratic equation. If the equation is not in this form, you may need to rearrange it before applying the quadratic formula.
In that case, the discriminant is not a perfect square.
There are two complex solutions.
That its roots (solutions) are coincident.
That its roots (solutions) are coincident.
C
It is finding the values of the variable that make the quadratic equation true.