Yes, an inverse can be a function, but this depends on the original function being one-to-one (bijective). A one-to-one function has a unique output for every input, allowing for the existence of an inverse that also meets the criteria of a function. If the original function is not one-to-one, its inverse will not be a function, as it would map a single output to multiple inputs.
It is an inverse function of a derivative, also known as an integral.
The logarithm function. If you specifically mean the function ex, the inverse function is the natural logarithm. However, functions with bases other than "e" might also be called exponential functions.
The inverse function means the opposite calculation. The inverse function of "add 6" would be "subtract 6".
Range
No. A simple example of this is y = x2; the inverse is x = y2, which is not a function.
The inverse of the inverse is the original function, so that the product of the two functions is equivalent to the identity function on the appropriate domain. The domain of a function is the range of the inverse function. The range of a function is the domain of the inverse function.
No. The inverse of an exponential function is a logarithmic function.
The original function's RANGE becomes the inverse function's domain.
The inverse of the cubic function is the cube root function.
-6 is a number, not a function and so there is not an inverse function.
It is an inverse function of a derivative, also known as an integral.
X squared is not an inverse function; it is a quadratic function.
The logarithm function. If you specifically mean the function ex, the inverse function is the natural logarithm. However, functions with bases other than "e" might also be called exponential functions.
The inverse function means the opposite calculation. The inverse function of "add 6" would be "subtract 6".
Range
No. A simple example of this is y = x2; the inverse is x = y2, which is not a function.
range TPate