Chat with our AI personalities
Yes, in a complex plane, the horizontal axis is the real axis, and the vertical axis is the imaginary axis.
It helps to visualize the numbers on a plane. The complex numbers occupy the entire plane. The real numbers are all the numbers on the horizontal axis, the imaginary numbers are all the numbers on the vertical axis. A complex number thus has a real and an imaginary part, a + bi, where a and be are real numbers (for example, 3 - 2i).
A complex number is a two-dimensional continuous quantity that is the sum of a real number and an imaginary number expressed in the form a+bi and plotted on a complex coordinate plane with the real line on the horizontal x-axis and the imaginary line on the vertical y-axis.
This is an interesting question. Looking at complex numbers graphically, zero is at the intersection of the real and imaginary axis, so it is 0 + 0i. But if you square zero, you get zero, which is not a negative number (a pure imaginary, when squared will give a real negative number), so I'd have to say it is not imaginary.
The real solutions are the points at which the graph of the function crosses the x-axis. If the graph never crosses the x-axis, then the solutions are imaginary.