answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

To solve a system of inequalities graphically you just need to graph each inequality and see which points are in the overlap of the graphs?

True


Which points are solutions to the system of inequalities?

To determine which points are solutions to a system of inequalities, you need to assess whether each point satisfies all the inequalities in the system. This involves substituting the coordinates of each point into the inequalities and checking if the results hold true. A point is considered a solution if it makes all the inequalities true simultaneously. Graphically, solutions can be found in the region where the shaded areas of the inequalities overlap.


Is it true or false To solve a system of inequalities you just need to graph each inequality and see which points are in the overlap of the graphs?

True


How do solutions differ for an equation and an inequality both algebraically and graphically?

Algebraically, solutions to an equation yield specific values that satisfy the equality, while solutions to an inequality provide a range of values that satisfy the condition (e.g., greater than or less than). Graphically, an equation is represented by a distinct curve or line where points satisfy the equality, whereas an inequality is represented by a shaded region that indicates all points satisfying the inequality, often including a boundary line that can be either solid (for ≤ or ≥) or dashed (for < or >). This distinction highlights the difference in the nature of solutions: precise for equations and broad for inequalities.


What is the points where used to graph linear inequalities?

To graph linear inequalities, you first identify the boundary line by rewriting the inequality in slope-intercept form (y = mx + b) and plotting the corresponding linear equation. If the inequality is strict (e.g., < or >), you use a dashed line to indicate that points on the line are not included. For non-strict inequalities (e.g., ≤ or ≥), a solid line is used. Finally, you shade the appropriate region of the graph to represent the solutions that satisfy the inequality, based on whether the inequality is greater than or less than.

Related Questions

To solve a system of inequalities graphically you just need to graph each inequality and see which points are in the overlap of the graphs?

True


Is it true or false To solve a system of inequalities you just need to graph each inequality and see which points are in the overlap of the graphs?

True


When graphing an inequality what does a dotted line mean?

A dotted line in a graph of an inequality indicates that the boundary line is not included in the solution set. This typically occurs with inequalities using "<" or ">", meaning that points on the dotted line do not satisfy the inequality. In contrast, a solid line would indicate that points on the line are included in the solution set, as seen with "<=" or ">=".


Are graphed linear inequalities supposed to be shaded?

Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.


How do graph inequalities on a grid?

Graphing inequalities on a grid involves first translating the inequality into an equation to determine the boundary line. For example, for the inequality (y < 2x + 3), you would graph the line (y = 2x + 3) as a dashed line (indicating that points on the line are not included). Next, you select a test point (usually the origin, if it’s not on the line) to determine which side of the line to shade. The shaded region represents all the solutions to the inequality.


What is the difference between linear equations and linear inequalities?

It is easiest to describe the difference in terms of coordinate geometry. A linear equation defines a straight line in the coordinate plane. Every point on the line satisfies the equation and no other points do. For a linear inequality, first consider the corresponding linear equality (or equation). That defines a straight line which divides the plane into two. Depending on the direction of the inequality, all points on one side of the line or the other satisfy the equation, and no point from the other side of the line does. If it is a strict inequality (< or >) then points on the line itself are excluded while if the inequality is not strict (≤or ≥) then points on the line are included.


The end points are what on a graph of an inequality?

points


Check all of the points that are solutions to the system of inequalities y 4x plus 3 y -4x plus 6?

the solution for the inequality 4x + 2 - 6x < -1 was x < 3/2


What types of equations or inequalities describe points x y that lie on a circle?

Linear equations or inequalities describe points x y that lie on a circle.


When graphing inequalities where can solutions be found?

I think that you are asking about the linear inequalities with two variables, so my answer is related to them. First, you have to draw the boundary line (be careful, if your inequality does not contain the equal sign, the boundary line will be a dashed line, because the points on the line are not solutions to the inequality), which divide the coordinate system in two half-planes. Second, you have to test a point on either sides of the line (the best point is the origin, (0, 0), if it is not on the boundary line). If that point satisfies the inequality, then there are all its solutions, otherwise they are to the opposite side.


The solutions to a linear inequality are the points in the plane that make the inequality true?

Yes, and no. The solution set to an inequality are those points which satisfy the inequality. A linear inequality is one in which no variable has a power greater than 1. Only if there are two variables will the solution be points in a plane; if there are more than two variables then the solution set will be points in a higher space, for example the solution set to the linear inequality x + y + z < 1 is a set of points in three dimensional space.


In a nonlinear inequality which region represents the set of points that satisfy the inequality?

shaded