Nope, bc the common difference is not constant ( linear) its goes up +1, +5, +2, therefore, again, it's not constant
The sequence provided is an arithmetic sequence where the first term is 3 and the common difference is 2. The formula for the nth term of an arithmetic sequence is given by ( a_n = a_1 + (n-1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. For the 10th term, ( a_{10} = 3 + (10-1) \times 2 = 3 + 18 = 21 ). Thus, the 10th term of the sequence is 21.
A sequence where a particular number is added to or subtracted from any term of the sequence to obtain the next term in the sequence. It is often call arithmetic progression, and therefore often written as A.P. An example would be: 2, 4, 6, 8, 10, ... In this sequence 2 is added to each term to obtain the next term.
There are 45 two-digit even numbers. The smallest two-digit even number is 10, and the largest is 98. The two-digit even numbers can be expressed as the sequence 10, 12, 14, ..., 98, which forms an arithmetic sequence with a common difference of 2. The count can be calculated by the formula for the number of terms in an arithmetic sequence.
An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. For example, the sequence 2, 5, 8, 11, 14 has a common difference of 3. Another example is 10, 7, 4, 1, which has a common difference of -3. In general, an arithmetic sequence can be expressed as (a_n = a_1 + (n-1)d), where (a_1) is the first term and (d) is the common difference.
Any arithmetic operation, other than division by zero, can be performed on any set of numbers in a sequence.
It is negative 2.
Yes.
The answer depends on what the explicit rule is!
It is the start of an arithmetic sequence.
10 - 4n
One of the simplest arithmetic arithmetic sequence is the counting numbers: 1, 2, 3, ... . The person who discovered that is prehistoric and, therefore, unknown.
The sequence provided is an arithmetic sequence where the first term is 3 and the common difference is 2. The formula for the nth term of an arithmetic sequence is given by ( a_n = a_1 + (n-1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. For the 10th term, ( a_{10} = 3 + (10-1) \times 2 = 3 + 18 = 21 ). Thus, the 10th term of the sequence is 21.
A sequence where a particular number is added to or subtracted from any term of the sequence to obtain the next term in the sequence. It is often call arithmetic progression, and therefore often written as A.P. An example would be: 2, 4, 6, 8, 10, ... In this sequence 2 is added to each term to obtain the next term.
There are 45 two-digit even numbers. The smallest two-digit even number is 10, and the largest is 98. The two-digit even numbers can be expressed as the sequence 10, 12, 14, ..., 98, which forms an arithmetic sequence with a common difference of 2. The count can be calculated by the formula for the number of terms in an arithmetic sequence.
10-2x for x = 0, 1, 2, 3, ... Since the domain of an arithmetic sequence is the set of natural numbers, then the formula for the nth term of the given sequence with the first term 10 and the common difference -2 is an = a1 + (n -1)(-2) = 10 - 2n + 2 = 12 - 2n.
An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. For example, the sequence 2, 5, 8, 11, 14 has a common difference of 3. Another example is 10, 7, 4, 1, which has a common difference of -3. In general, an arithmetic sequence can be expressed as (a_n = a_1 + (n-1)d), where (a_1) is the first term and (d) is the common difference.
neither