answersLogoWhite

0


Best Answer

The limit does not exist.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Limit x approaches infinity for cos of x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is limit as x approaches 0 of cos squared x by x?

The limit of cos2(x)/x as x approaches 0 does not exist. As x approaches 0 from the left, the limit is negative infinity. As x approaches 0 from the right, the limit is positive infinity. These two values would have to be equal for a limit to exist.


What is the limit of sin multiplied by x minus 1 over x squared plus 2 as x approaches infinity?

As X approaches infinity it approaches close as you like to 0. so, sin(-1/2)


When does a problem in mathematics have no limit?

When the limit as the function approaches from the left, doesn't equal the limit as the function approaches from the right. For example, let's look at the function 1/x as x approaches 0. As it approaches 0 from the left, it travels towards negative infinity. As it approaches 0 from the right, it travels towards positive infinity. Therefore, the limit of the function as it approaches 0 does not exist.


What is the answer to limit as x approaches infinity of e raised-x squared?

limit x tends to infinitive ((e^x)-1)/(x)


How do you solve the limit as x approaches 90 degrees of cos 2x divided by tan 3x?

Take the limit of the top and the limit of the bottom. The limit as x approaches cos(2*90°) is cos(180°), which is -1. Now, take the limit as x approaches 90° of tan(3x). You might need a graph of tan(x) to see the limit. The limit as x approaches tan(3*90°) = the limit as x approaches tan(270°). This limit does not exist, so we'll need to take the limit from each side. The limit from the left is ∞, and the limit from the right is -∞. Putting the top and bottom limits back together results in the limit from the left as x approaches 90° of cos(2x)/tan(3x) being -1/∞, and the limit from the right being -1/-∞. -1 divided by a infinitely large number is 0, so the limit from the left is 0. -1 divided by an infinitely large negative number is also zero, so the limit from the right is also 0. Since the limits from the left and right match and are both 0, the limit as x approaches 90° of cos(2x)/tan(3x) is 0.

Related questions

What is limit as x approaches 0 of cos squared x by x?

The limit of cos2(x)/x as x approaches 0 does not exist. As x approaches 0 from the left, the limit is negative infinity. As x approaches 0 from the right, the limit is positive infinity. These two values would have to be equal for a limit to exist.


What is the limit as x approaches infinity of the square root of x?

What is the limit as x approaches infinity of the square root of x? Ans: As x approaches infinity, root x approaches infinity - because rootx increases as x does.


What is the limit of trigonometric function csc 2x cos 5x as x tends to zero?

The answer depends on the side from which x approaches 0. If from the negative side, then the limit is negative infinity whereas if from the positive side, it is positive infinity.


Lim x approaches 0 x x x x?

When the limit of x approaches 0 x approaches the value of x approaches infinity.


What is the limit as x approaches 0 of 1 plus cos squared x over cos x?

2


What is the limit of sin multiplied by x minus 1 over x squared plus 2 as x approaches infinity?

As X approaches infinity it approaches close as you like to 0. so, sin(-1/2)


When does a problem in mathematics have no limit?

When the limit as the function approaches from the left, doesn't equal the limit as the function approaches from the right. For example, let's look at the function 1/x as x approaches 0. As it approaches 0 from the left, it travels towards negative infinity. As it approaches 0 from the right, it travels towards positive infinity. Therefore, the limit of the function as it approaches 0 does not exist.


What is the answer to limit as x approaches infinity of e raised-x squared?

limit x tends to infinitive ((e^x)-1)/(x)


How do you solve the limit as x approaches 90 degrees of cos 2x divided by tan 3x?

Take the limit of the top and the limit of the bottom. The limit as x approaches cos(2*90°) is cos(180°), which is -1. Now, take the limit as x approaches 90° of tan(3x). You might need a graph of tan(x) to see the limit. The limit as x approaches tan(3*90°) = the limit as x approaches tan(270°). This limit does not exist, so we'll need to take the limit from each side. The limit from the left is ∞, and the limit from the right is -∞. Putting the top and bottom limits back together results in the limit from the left as x approaches 90° of cos(2x)/tan(3x) being -1/∞, and the limit from the right being -1/-∞. -1 divided by a infinitely large number is 0, so the limit from the left is 0. -1 divided by an infinitely large negative number is also zero, so the limit from the right is also 0. Since the limits from the left and right match and are both 0, the limit as x approaches 90° of cos(2x)/tan(3x) is 0.


What is the limit of 1-cos x over x squared when x approaches 0?

1


What is the limit of x divided by e to the x as x approaches infinity?

Limit as x tends to ∞: x/e^xAs you can see, as x approaches infinity, the sum becomes ∞/∞. Now we use l'Hospitals rules.d/dx(x) = 1 (Derivative)d/dx(e^x) = e^x (Derivative)therefore, the sum can be written as lim x tends to ∞ 1/e^xNow as x approaches infinity, the sum = 1/∞ = 0Therefore, lim x tends to infinity: x/e^x = 0


What is the limit of x as it approaches infinity for e to the negative 2x divided by the square root of 1-x squared?

1