If line BE is the bisector of segment AC, it means that BE divides AC into two equal segments. Therefore, if AB is 7, then AC must be twice that length, making AC equal to 14.
If line BE is the bisector of segment AC, it means that it divides AC into two equal parts. Given that AB is 7 units, it implies that the length of AC is twice the length of AB. Therefore, AC is 2 × 7 = 14 units.
The answer is "No Solution" because there is not enough information.
the midpoint of
Yes. AB, AC, BC and EF.
If line BE is the bisector of segment AC, it means that BE divides AC into two equal segments. Therefore, if AB is 7, then AC must be twice that length, making AC equal to 14.
14
If line BE is the bisector of segment AC, it means that it divides AC into two equal parts. Given that AB is 7 units, it implies that the length of AC is twice the length of AB. Therefore, AC is 2 × 7 = 14 units.
If 2 segments have the same length they are known as 'congruent segments' IE: segment AB=segment AC (or AB=AC) then AB @ AC (or AB is congruent to AC)
segment ac
The answer is "No Solution" because there is not enough information.
To find the length of segment AB, we can use the segment addition postulate, which states that the total length of a segment is equal to the sum of the lengths of its parts. Therefore, AB + BC = AC. Given that AC = 78 mm and BC = 29 mm, we can substitute these values into the equation to find AB: AB + 29 = 78. Solving for AB, we get AB = 78 - 29 = 49 mm.
Ab+bc=ac
Since B is located between A and C, you can just add the two lengths together, so AC = m + n.your segment looks like this:A----B----Cwhere AB=m, BC=n, and AC=m+n
Usually a line segment in a triangle is either assigned a letter, or is referred to by the letters at the end of the segment with a line overhead. For instance, if you have a triangle ABC, you'll have segments AB, AC, and BC. And there would be a line over each segment name.
It is easiest to draw it using two right angled triangles.Draw a line AB that is 2 units long. From B, draw BC which is perpendicular to AB and 2 units long. Join AC. From C, draw CD which is perpendicular to AC (clockwise if BC is clockwise from AB, or anticlockwise if BC is anticlockwise) and make CD 2 uinits long. Then AD is a line segment which is sqrt(12) units long.
To show that the perpendicular line segment is the shortest among all line segments drawn from a given point not on it, we can use the Pythagorean theorem. Let the given point be P and the line segment be AB, with the perpendicular from P meeting AB at C. By the Pythagorean theorem, the sum of the squares of the two sides of a right triangle is equal to the square of the hypotenuse. In this case, PC is the hypotenuse, and AP and AC are the other two sides. Thus, AC (perpendicular line segment) will always be shorter than any other line segment AB drawn from point P.