name a line that is not contained in plane N.
Is true
If points p and q are contained in a plane, then the line segment connecting p and q also lies entirely within that plane. In Euclidean geometry, any two points define a straight line, and since both points are in the same plane, the entire line segment joining them must also be contained in that plane. Therefore, it is accurate to say that points p and q, along with all points between them, are entirely contained in the plane.
Yes, if points P and Q are contained in a plane, then the line segment connecting P and Q, denoted as PQ, is also entirely contained in that plane. This is a fundamental property of planes in Euclidean geometry, where any line segment formed by two points within the same plane must lie entirely within that plane. Therefore, the assertion is correct.
You a goofy shoty B.
7,975
Is true
True.
Is true
True!
It’s true (apex)
apex it’s true on god
If points p and q are contained in a plane, then the line segment connecting p and q also lies entirely within that plane. In Euclidean geometry, any two points define a straight line, and since both points are in the same plane, the entire line segment joining them must also be contained in that plane. Therefore, it is accurate to say that points p and q, along with all points between them, are entirely contained in the plane.
Yes, if points P and Q are contained in a plane, then the line segment connecting P and Q, denoted as PQ, is also entirely contained in that plane. This is a fundamental property of planes in Euclidean geometry, where any line segment formed by two points within the same plane must lie entirely within that plane. Therefore, the assertion is correct.
true
skew
Is true
skew