answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: Prove lim lnx equals - infinity x - 0 plus?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the Limit as X approaches infinity 5-X plus cosXoverX?

There are multiple ways to interpret this question-that is, you could mean either (5-x+cosx)/x or 5-x +(cosx/x). The limit of the second option is negative infinity because as x approaches infinity, |cosx/x|≤1, so 5-x+cosx/x is very close to 5-x, and 5-infinity is basically negative infinity. For the first option, we consider that -1≤cosx≤1. This implies that, as x approaches infinity, lim of (5-x-1)/x≤lim of (5-x+cosx)/x≤lim of (5-x+1)/x. Simplifying, we get that, as x approaches infinity, lim of (4-x)/x≤lim of (5-x+cosx)/x≤(6-x)/x. Simplifying our new limits, we get -1≤lim of (5-x+cosx)/x≤1. It is now clear that the limit of (5-x+cosx)/x as x approaches infinity =negative 1.


Why is it said that poisson distribution is a limiting case of binomial distribution?

This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.


How do you find the definition of derivative of f of x equals 3x plus 2?

The definition of the derivative, at a point X = x is the limit, as dx tends to 0, of [f(x+dx)-f(x)]/dx. In this case, therefore, it is lim[3*(x+dx)+2 - (3*x+2)]/dx = lim[3x + 3*dx +2 - 3x - 2]/dx = lim[3*dx/dx] = lim[3] = 3.


Lim x2 3x plus 1?

If you mean: Lim(x→2) 3x + 1 Then the answer is 7 If you mean something else, then you'll need to clarify your question.


How do you calculate integrals that go to infinite?

You do what we call an "improper integral". I will denote the integral of f from a to b as intl a-b (f) here. so we define intl a-infinity (f) as lim b->infinity a-b(f) So it is a limit, and just like all other integrals, it may or may not exist (+/- infinity or infinite uncountable oscilations etc.) You have have to prove yourself though about its properties (it's easy since I reduced it to the regular integral) and you will see it's a perfectly fine definition. If you want examples, I have lots, message me.