answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: Prove lim lnx equals - infinity x - 0 plus?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the Limit as X approaches infinity 5-X plus cosXoverX?

There are multiple ways to interpret this question-that is, you could mean either (5-x+cosx)/x or 5-x +(cosx/x). The limit of the second option is negative infinity because as x approaches infinity, |cosx/x|≤1, so 5-x+cosx/x is very close to 5-x, and 5-infinity is basically negative infinity. For the first option, we consider that -1≤cosx≤1. This implies that, as x approaches infinity, lim of (5-x-1)/x≤lim of (5-x+cosx)/x≤lim of (5-x+1)/x. Simplifying, we get that, as x approaches infinity, lim of (4-x)/x≤lim of (5-x+cosx)/x≤(6-x)/x. Simplifying our new limits, we get -1≤lim of (5-x+cosx)/x≤1. It is now clear that the limit of (5-x+cosx)/x as x approaches infinity =negative 1.


Why is it said that poisson distribution is a limiting case of binomial distribution?

This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.


How do you find the definition of derivative of f of x equals 3x plus 2?

The definition of the derivative, at a point X = x is the limit, as dx tends to 0, of [f(x+dx)-f(x)]/dx. In this case, therefore, it is lim[3*(x+dx)+2 - (3*x+2)]/dx = lim[3x + 3*dx +2 - 3x - 2]/dx = lim[3*dx/dx] = lim[3] = 3.


Lim x2 3x plus 1?

If you mean: Lim(x→2) 3x + 1 Then the answer is 7 If you mean something else, then you'll need to clarify your question.


How do you calculate integrals that go to infinite?

You do what we call an "improper integral". I will denote the integral of f from a to b as intl a-b (f) here. so we define intl a-infinity (f) as lim b->infinity a-b(f) So it is a limit, and just like all other integrals, it may or may not exist (+/- infinity or infinite uncountable oscilations etc.) You have have to prove yourself though about its properties (it's easy since I reduced it to the regular integral) and you will see it's a perfectly fine definition. If you want examples, I have lots, message me.

Related questions

What is e to the power infinity?

E to the power infinity, or lim en as n approaches infinity is infinity.


What is the Limit as X approaches infinity 5-X plus cosXoverX?

There are multiple ways to interpret this question-that is, you could mean either (5-x+cosx)/x or 5-x +(cosx/x). The limit of the second option is negative infinity because as x approaches infinity, |cosx/x|≤1, so 5-x+cosx/x is very close to 5-x, and 5-infinity is basically negative infinity. For the first option, we consider that -1≤cosx≤1. This implies that, as x approaches infinity, lim of (5-x-1)/x≤lim of (5-x+cosx)/x≤lim of (5-x+1)/x. Simplifying, we get that, as x approaches infinity, lim of (4-x)/x≤lim of (5-x+cosx)/x≤(6-x)/x. Simplifying our new limits, we get -1≤lim of (5-x+cosx)/x≤1. It is now clear that the limit of (5-x+cosx)/x as x approaches infinity =negative 1.


What is the value of e?

The value of e, also known as Euler's number, is an irrational mathematical constant approximately equal to 2.71828. It is the base of the natural logarithm and appears in many important mathematical formulas, such as compound interest, probability, and calculus. Euler's number is a fundamental constant in mathematics and is widely used in various fields of science and engineering.


Why is it said that poisson distribution is a limiting case of binomial distribution?

This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.


How do you find the definition of derivative of f of x equals 3x plus 2?

The definition of the derivative, at a point X = x is the limit, as dx tends to 0, of [f(x+dx)-f(x)]/dx. In this case, therefore, it is lim[3*(x+dx)+2 - (3*x+2)]/dx = lim[3x + 3*dx +2 - 3x - 2]/dx = lim[3*dx/dx] = lim[3] = 3.


What is the limit of x divided by e to the x as x approaches infinity?

Limit as x tends to ∞: x/e^xAs you can see, as x approaches infinity, the sum becomes ∞/∞. Now we use l'Hospitals rules.d/dx(x) = 1 (Derivative)d/dx(e^x) = e^x (Derivative)therefore, the sum can be written as lim x tends to ∞ 1/e^xNow as x approaches infinity, the sum = 1/∞ = 0Therefore, lim x tends to infinity: x/e^x = 0


Lim x2 3x plus 1?

If you mean: Lim(x→2) 3x + 1 Then the answer is 7 If you mean something else, then you'll need to clarify your question.


How do you calculate integrals that go to infinite?

You do what we call an "improper integral". I will denote the integral of f from a to b as intl a-b (f) here. so we define intl a-infinity (f) as lim b->infinity a-b(f) So it is a limit, and just like all other integrals, it may or may not exist (+/- infinity or infinite uncountable oscilations etc.) You have have to prove yourself though about its properties (it's easy since I reduced it to the regular integral) and you will see it's a perfectly fine definition. If you want examples, I have lots, message me.


Lim x approaches 0 x x x x?

When the limit of x approaches 0 x approaches the value of x approaches infinity.


Is 1 divided by 0 both negative and positive infinity What is Imaginary or Complex infinity?

Undefined: You cannot divide by zero


How do you solve this Lim x - 0 x divided by x squared plus 2x?

Lim x (is going to 0) x/(x^2 + 2x)= Lim x (is going to 0) x/[x(x + 2)]= Lim x (is going to 0) 1/(x + 2) = 1/2


What is the limit of x divided by e to the x as x approaches negativ infinity?

lim x -> -inf [x/ex] = lim x -> +inf[-x/e-x] = - lim x -> +inf [ xex ] = -infIf you want to see this function then I suggest you use either:(a) wolframalpha.com: put in show me x/exp(x)or (b) geogebra, which is available for the desktop.