answersLogoWhite

0


Best Answer

I will prove a more general theorem from which your answer follows immediately. Theorem: The intersection of any number (including 2) of convex polygons is convex.

Proof

Let C be the intersection of Ci which is a set of iconvex polygons. By definition of intersection, if two points A and B belong to C then they belong to every one of the Ci . But the convexity of each of the Ci tells us that line segment AB is contained in Ci . Therefore, the line segment AB is in C and because ABwas arbitrary we conclude that C is convex

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Prove that intersection of two convex polgons is a convex as well?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Does commutative law apply in the operation of sets?

Both union and intersection are commutative, as well as associative.


What does the geometric figure the elevengon look like?

Well, depending on how you want it, either a convex, reflex, or regularhendecagon , or a eleven-gon. I think this is how they look like though.


What are the 4 basic operations on set?

A set is a collection of well defined objects known as elements Opperatons of sets are 1)union - the union of sets A and B is the set that contains all elements in A and all elements in B. intersection - given two sets A and B, the intersection of A and B is a set that contains all elements in common between A and B. compliments - given set A, A compliment is the set of all elements in the universal set but not in A difference - A-B is a set containing all elements in A that are not in B. symmetric difference - it is the sum of A and B minus A intersection B.


How can you prove when a fact is true?

You can prove a fact is true by looking it up on several Internet sites or a book. When looking up a fact make sure that the source you are using is reputable and well versed in the subject you are looking for. It is also a good idea to cross-reference the fact on several sites.


Is the set of prime numbers is well defined or not and why?

The set is well defined. Whether or not a given integer belongs to the set of prime numbers is clearly defined even if, for extremely large numbers, it may prove impossible to determine the status of that number.

Related questions

Which lens is used by dentist?

Well, It depends what kind of image do they want. It would be most likely a convex lens/ mirror. Convex lenses make things bigger.


An intersection is any place where one line of traffic meets another?

Yes a intersection is any place where one line of traffic meets another. Another place where an intersection can occur is with lines in parking lots as well as on roadways.


What does an upside down u mean in math?

It is used in set theory to indicate intersection. The intersection of two sets, A and B, is the set of all elements that are in A as well as in B.


Differentiate convex polygon from non convex polygon?

A polygon is convex if it has no two points that can be used to define a line segment that falls outside of that polygon. Another way to put it is: a convex polygon has all vertices pointing 'out'. Consider the following 6-sided polygon: _ ' | |_ |__| Well you get the idea. The 'notch' cut out of the square turns the square into a six sided figure now, with the 'corner' in the upper right pointing 'in' so the polygon is not convex.


Prove A union C minus B minus C equals A minus B union C?

This is really a version of deMorgans that states the complement of the intersection of any number of sets equals the union of their complements.We prove it in general and this is a specific case.Take x contained in the complement of the intersection of all sets Aj that is to say x is not in the intersection of all Aj . Now there must be at least one set that does not contain x since if all sets contain x then x would be in their intersection as well. Call this set A. Since x is not in A, x must be in the complement of A. But then x is also in the union of all complements of Aj , because A is one of those sets. This proves that the right hand set is contained in the left one.We now prove it the other way, that is to say, the left hand side is contained in the right. Remember that if A and B are sets and A is contained in B and B is contained in A we can say that as sets A=B.Consider x contained in the union of all complements of Aj . That means there is at least one complement that contains x, or in other words, at least one of the Aj does not contain x. But then x is not in the intersection of all Aj , and hence it must be in the complement of that intersection. That proves the other inequality, so both sets must be equal.


You wont more uses of concave and convex mirror as well as of curved mirror?

Your question makes no sense


Does commutative law apply in the operation of sets?

Both union and intersection are commutative, as well as associative.


How do you ge through the game Detective Grimoire?

well you see to prove who really is the murderer you have to prove whos' innocent


What is a complement subset and intersection of sets?

Suppose A is a subset of S. Then the complement of subset A in S consists of all elements of S that are not in A. The intersection of two sets A and B consists of all elements that are in A as well as in B.


Why do people debate?

The reason people debate is to prove the point they are trying to prove. They are supporting an idea and want others to support it as well.


You want to manignify a butterfly so that you can see the colorful scales on its wings what would you use a concave lens or a convex lens?

i guess it doesnt really matter. my magnifying glass is a convex lens so yaaaa. well that's all i got cuz this website don't even no what a concave or convex lens is.


Are Pikmin real?

Well.... you can't really prove something doesn't exist, you can only prove it does. But, nobody has found or seen a pikmin outside the game.