One definition of sine and cosine is with a unitary circle. In this case, the sine is simply equal to the y-coordinate, and the cosine, the x-coordinate. Since the hypothenuse is 1, the equation in the question follows directly from Pythagoras' Law: x2 + y2 = r2, x2 + y2 = 1, cos2A + sin2A = 1. You can also derive it from the alternative definition of sine and cosine (ratios in a right triangle).
Sin 15 + cos 105 = -1.9045
To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
The result is variant, therefore uncertain. The only sure thing is that sin(x)2 + cos(x)2 = 1.
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
Sin 15 + cos 105 = -1.9045
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
Well, darling, if we square the first equation and the second equation, add them together, and do some algebraic magic, we can indeed show that a squared plus b squared equals 89. It's like a little math puzzle, but trust me, the answer is as sassy as I am.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
-1
leonhard euler
No. sin(0) = 0 So cos(0)*sin(0) = 0 so the left hand side = 1
The derivative of cos(x) equals -sin(x); therefore, the anti-derivative of -sin(x) equals cos(x).
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
The result is variant, therefore uncertain. The only sure thing is that sin(x)2 + cos(x)2 = 1.