True. In Euclidean geometry, if there is a line and a point not on that line, there exists exactly one line that can be drawn through the point that is parallel to the given line. This is known as the Parallel Postulate, which states that for a given line and a point not on it, there is one and only one line parallel to the given line that passes through the point.
True
Through two given lines, there can be either zero, one, or infinitely many lines that can be drawn, depending on their relationship. If the two lines are parallel, no line can pass through both. If they intersect, exactly one line can be drawn through their intersection point. If they are coincident (the same line), then infinitely many lines can be drawn through them.
zero
In Geometry
True. In Euclidean geometry, if there is a line and a point not on that line, there exists exactly one line that can be drawn through the point that is parallel to the given line. This is known as the Parallel Postulate, which states that for a given line and a point not on it, there is one and only one line parallel to the given line that passes through the point.
True
Assume there are no lines through a given point that is parallel to a given line or assume that there are many lines through a given point that are parallel to a given line. There exist a line l and a point P not on l such that either there is no line m parallel to l through P or there are two distinct lines m and n parallel to l through P.
Euclid's parallel postulate.
zero
The Playfair Axiom (or "Parallel Postulate")
Euclidean Geometry is based on the premise that through any point there is only one line that can be drawn parallel to another line. It is based on the geometry of the Plane. There are basically two answers to your question: (i) Through any point there are NO lines that can be drawn parallel to a given line (e.g. the geometry on the Earth's surface, where a line is defined as a great circle. (Elliptic Geometry) (ii) Through any point, there is an INFINITE number of lines that can be drawn parallel of a given line. (I think this is referred to as Riemannian Geometry, but someone else needs to advise us on this) Both of these are fascinating topics to study.
In Geometry
Probably the best known equivalent of Euclid's parallel postulate, contingent on his other postulates, is Playfair's axiom, named after the Scottish mathematician John Playfair, which states:In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.
"Euclidean" geometry is the familiar "standard" geometry. Until the 19th century, it was simply "geometry". It features infinitely divisible space, up to three dimensions, and, most notably, the "parallel postulate": "Given a line, and a point not on the line, there is exactly one line that can be drawn through the point and parallel to the given line."
Another name for the Playfair Axiom is the Euclid's Parallel Postulate. It states that given a line and a point not on that line, there is exactly one line parallel to the given line passing through the given point.
infinitely many