... dependent on the length of the pendulum. ... longer than the period of the same pendulum on Earth. Both of these are correct ways of finishing that sentence.
Increases.
Yes. The period of the pendulum (the time it takes it swing back and forth once) depends on the length of the pendulum, and also on how strong gravity is. The moon is much smaller and less massive than the earth, and as a result, gravity is considerably weaker. This would make the period of a pendulum longer on the moon than the period of the same pendulum would be on earth.
The period of a pendulum (for short swings) is about 2 PI (L/g)1/2. The gravity on the moon is less than that on Earth by a factor of six, so the period of the pendulum on the moon would be greater, i.e. slower, by about a factor of 2.5.
The period of a simple pendulum swinging at a small angle is approximately 2*pi*Sqrt(L/g), where L is the length of the pendulum, and g is acceleration due to gravity. Since gravity on the moon is approximately 1/6 of Earth's gravity, the period of a pendulum on the moon with the same length will be approximately 2.45 times of the same pendulum on the Earth (that's square root of 6).
This pendulum, which is 2.24m in length, would have a period of 7.36 seconds on the moon.
... dependent on the length of the pendulum. ... longer than the period of the same pendulum on Earth. Both of these are correct ways of finishing that sentence.
The time period of a pendulum would increases it the pendulum were on the moon instead of the earth. The period of a simple pendulum is equal to 2*pi*√(L/g), where g is acceleration due to gravity. As gravity decreases, g decreases. Since the value of g would be smaller on the moon, the period of the pendulum would increase. The value of g on Earth is 9.8 m/s2, whereas the value of g on the moon is 1.624 m/s2. This makes the period of a pendulum on the moon about 2.47 times longer than the period would be on Earth.
Increases.
Yes. The period of the pendulum (the time it takes it swing back and forth once) depends on the length of the pendulum, and also on how strong gravity is. The moon is much smaller and less massive than the earth, and as a result, gravity is considerably weaker. This would make the period of a pendulum longer on the moon than the period of the same pendulum would be on earth.
The period of a simple pendulum would be longer on the moon compared to the Earth. This is because the acceleration due to gravity is weaker on the moon, resulting in slower oscillations of the pendulum.
The period of a pendulum (for short swings) is about 2 PI (L/g)1/2. The gravity on the moon is less than that on Earth by a factor of six, so the period of the pendulum on the moon would be greater, i.e. slower, by about a factor of 2.5.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
The period of a simple pendulum swinging at a small angle is approximately 2*pi*Sqrt(L/g), where L is the length of the pendulum, and g is acceleration due to gravity. Since gravity on the moon is approximately 1/6 of Earth's gravity, the period of a pendulum on the moon with the same length will be approximately 2.45 times of the same pendulum on the Earth (that's square root of 6).
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.
Nice problem! I get 32.1 centimeters.
The time period of a pendulum is directly proportional to the square root of its length. If the length of the pendulum is increased, the time period will also increase. Conversely, if the length is decreased, the time period will decrease.