answersLogoWhite

0

Time period of a pendulum on moon is?

Updated: 12/15/2022
User Avatar

Jainakhil894

Lvl 1
12y ago

Best Answer

About 40.7% of that on Earth or about 2.46 times slower.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Time period of a pendulum on moon is?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic
Related questions

Time period of simple pendulum is three seconds the same pendulum taken at the moon - what will be its new time period?

This pendulum, which is 2.24m in length, would have a period of 7.36 seconds on the moon.


What is the time period of a pendulum on moon?

... dependent on the length of the pendulum. ... longer than the period of the same pendulum on Earth. Both of these are correct ways of finishing that sentence.


How would the time period of a simple pendulum clock be affected if it were on the moon instead of the earth?

The time period of a pendulum would increases it the pendulum were on the moon instead of the earth. The period of a simple pendulum is equal to 2*pi*√(L/g), where g is acceleration due to gravity. As gravity decreases, g decreases. Since the value of g would be smaller on the moon, the period of the pendulum would increase. The value of g on Earth is 9.8 m/s2, whereas the value of g on the moon is 1.624 m/s2. This makes the period of a pendulum on the moon about 2.47 times longer than the period would be on Earth.


Can you use simple pendulum in moon?

Yes. The period of the pendulum (the time it takes it swing back and forth once) depends on the length of the pendulum, and also on how strong gravity is. The moon is much smaller and less massive than the earth, and as a result, gravity is considerably weaker. This would make the period of a pendulum longer on the moon than the period of the same pendulum would be on earth.


Is a pendulum's time period increases or decreases when it taken from earth to moon?

Increases.


How would the period of a simple pendulum be affected if it were located on the moon instead of the earth?

The period of a simple pendulum would be longer on the moon compared to the Earth. This is because the acceleration due to gravity is weaker on the moon, resulting in slower oscillations of the pendulum.


Does the period of a pendulum increase or decrease on Moon?

The period of a pendulum (for short swings) is about 2 PI (L/g)1/2. The gravity on the moon is less than that on Earth by a factor of six, so the period of the pendulum on the moon would be greater, i.e. slower, by about a factor of 2.5.


What is the difference in period for a pendulum on earth and a pendulum on moon?

The period of a simple pendulum swinging at a small angle is approximately 2*pi*Sqrt(L/g), where L is the length of the pendulum, and g is acceleration due to gravity. Since gravity on the moon is approximately 1/6 of Earth's gravity, the period of a pendulum on the moon with the same length will be approximately 2.45 times of the same pendulum on the Earth (that's square root of 6).


What factors determine the time period of the simple pendulum?

The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is the length of a pendulum whose period on the moon matches the period of a 1.94-m-long pendulum on the earth?

Nice problem! I get 32.1 centimeters.


What happens when you double the mass of a pendulum?

Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.


Why time period of simple pendulum is independent of mass?

The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.