4
To find the image of the point (3, 5) after a rotation of -270 degrees (which is equivalent to a 90-degree rotation clockwise), you can use the rotation formula. The new coordinates will be (y, -x), resulting in the point (5, -3). Thus, the image of the point (3, 5) after a -270-degree rotation is (5, -3).
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
dark, morbid, just.
The great turkey has a number of attributes. One attribute of the turkey is it's ability to make a great dinner meat.
To find the image of the point (3, 5) after a rotation of -90º (which is equivalent to a clockwise rotation of 90º), you can use the rotation formula. The new coordinates will be (y, -x), which transforms the point (3, 5) into (5, -3). So, the image of the point (3, 5) after a -90º rotation is (5, -3).
4
1-8-4-3-6-5-7-2
What is the image of point (3, 5) if the rotation is
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
3/4 of a rotation or a turn is 270 degrees
Single fearsome leadermilitary ruleoppression and terror, tyranny, no freedomgeneral populous suffers, hungers and needs good paying jobsmurder and executions common