solution set
Yes, and no. The solution set to an inequality are those points which satisfy the inequality. A linear inequality is one in which no variable has a power greater than 1. Only if there are two variables will the solution be points in a plane; if there are more than two variables then the solution set will be points in a higher space, for example the solution set to the linear inequality x + y + z < 1 is a set of points in three dimensional space.
The inequality ( y < 8 ) is represented by a horizontal line at ( y = 8 ) with a dashed line, indicating that points on the line are not included in the solution. The area below this line represents the solution set, where all points have a ( y )-value less than 8. Therefore, any graph depicting this with the correct shading below the dashed line would accurately represent the inequality.
A number line can visually represent the solutions of an inequality by marking the relevant points and shading the appropriate region. For example, if the inequality is ( x > 3 ), you would place an open circle at 3 (indicating that 3 is not included) and shade to the right to show all numbers greater than 3. Conversely, for ( x \leq 2 ), you would place a closed circle at 2 and shade to the left to indicate all numbers less than or equal to 2. This method provides a clear visual representation of the solution set.
A dotted line in a graph of an inequality indicates that the boundary line is not included in the solution set. This typically occurs with inequalities using "<" or ">", meaning that points on the dotted line do not satisfy the inequality. In contrast, a solid line would indicate that points on the line are included in the solution set, as seen with "<=" or ">=".
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
Yes, and no. The solution set to an inequality are those points which satisfy the inequality. A linear inequality is one in which no variable has a power greater than 1. Only if there are two variables will the solution be points in a plane; if there are more than two variables then the solution set will be points in a higher space, for example the solution set to the linear inequality x + y + z < 1 is a set of points in three dimensional space.
We identify a set of points in the relevant space which are part of the solution set of the equation or inequality. The space may have any number of dimensions, the solution set may be contiguous or in discrete "blobs".
It can represent the graph of a strict inequality where the inequality is satisfied by the area on one side of the dashed line and not on the other. Points on the line do not satisfy the inequality.
It depends upon the inequality. All points on the line are those which are equal, thus:If the inequality is (strictly) "less than" () then the points on the line are not included; howeverif the inequality is "less than or equals" (≤) or "greater than or equals" (≥) then the points on the line are included.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
An equality defines a specific point (or points). An inequality can define an interval.
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
points
There are an infinite number of points that qualify. Please tell us what our choices are, and we'll select the right one[s].
The solution set is all points on the circle.
shaded
They are seven and represent the deadly sins.