If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If the line is undefined in a graphed inequality, it typically represents a vertical line, which corresponds to a vertical inequality such as ( x = a ). In this case, the inequality can be written as ( x < a ) or ( x > a ). The graph will shade to the left or right of the line, indicating the region that satisfies the inequality. Since the line itself is not included in the inequality, it is often represented with a dashed line.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
To graph a two-variable linear inequality, first convert the inequality into an equation by replacing the inequality sign with an equal sign, which gives you the boundary line. Next, graph this line using a solid line for ≤ or ≥ and a dashed line for < or >. Then, determine which side of the line to shade by testing a point not on the line (usually the origin) to see if it satisfies the inequality. Finally, shade the appropriate region to represent all the solutions to the inequality.
A dotted line in a graph of an inequality indicates that the boundary line is not included in the solution set. This typically occurs with inequalities using "<" or ">", meaning that points on the dotted line do not satisfy the inequality. In contrast, a solid line would indicate that points on the line are included in the solution set, as seen with "<=" or ">=".
Graphing a linear equation in two variables results in a straight line, representing all the solutions that satisfy the equation, while graphing a linear inequality produces a region on one side of the line that includes all the solutions satisfying the inequality. The line itself is solid if the inequality is ≤ or ≥, indicating that points on the line are included, or dashed if the inequality is < or >, indicating that points on the line are not included. Additionally, the area shaded represents all the combinations of values that satisfy the inequality, contrasting with the single line for an equation.
The graph of an inequality is a region, not a line.
It can represent the graph of a strict inequality where the inequality is satisfied by the area on one side of the dashed line and not on the other. Points on the line do not satisfy the inequality.
The line is dotted when the inequality is a strict inequality, ie it is either "less than" (<) or "greater than" (>). If there is an equality in the inequality, ie "less than or equal to" (≤), "greater than or equal to" (≥) or "equal to" (=) then the line is drawn as a solid line.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
To graph a two-variable linear inequality, first convert the inequality into an equation by replacing the inequality sign with an equal sign, which gives you the boundary line. Next, graph this line using a solid line for ≤ or ≥ and a dashed line for < or >. Then, determine which side of the line to shade by testing a point not on the line (usually the origin) to see if it satisfies the inequality. Finally, shade the appropriate region to represent all the solutions to the inequality.
If the inequality has a > or ≥ sign, you shade above the line. If the inequality has a < or ≤ sign, you shade below it. Obviously, just an = is an equation, not an inequality.
Any compound inequality, in one variable, can be graphed on the number line.
Basically. If the inequality's sign is < or ≤, then you shade the part under the line. If the inequality's sign is > or ≥, then you shade the part over the line.
when graphing a line you simply plot the points based on the ordered pairs and connect the dots; there you have a line. An inequality graph refers to the shaded region of the coordinate plane that does not coincide with the line, hence the term, inequality.
If the points that are ON the line satisfy the inequality then the line should be solid. Otherwise it should be dotted. Another way of putting that is, if the inequality is given in terms of ≤ or ≥, then use a solid line. If they are < or > use a dotted line.
It depends upon the inequality. All points on the line are those which are equal, thus:If the inequality is (strictly) "less than" () then the points on the line are not included; howeverif the inequality is "less than or equals" (≤) or "greater than or equals" (≥) then the points on the line are included.
A dotted line in a graph of an inequality indicates that the boundary line is not included in the solution set. This typically occurs with inequalities using "<" or ">", meaning that points on the dotted line do not satisfy the inequality. In contrast, a solid line would indicate that points on the line are included in the solution set, as seen with "<=" or ">=".