If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
If I understand the question correctly, the inequality is not strict. This means that points on the line are part of the solution and so the line is shown as a solid line rather than a dashed line.
When graphing a linear inequality, the first step is to replace the inequality symbol with an equal sign to graph the corresponding linear equation. This creates a boundary line, which can be solid (for ≤ or ≥) or dashed (for < or >) depending on whether the points on the line are included in the solution set. After graphing the line, you then determine which side of the line represents the solution set by testing a point (usually the origin if it's not on the line) to see if it satisfies the original inequality. Finally, shade the appropriate region to indicate the solutions to the inequality.
Take a sample point from either the top or bottom of the graph. I like to use (0,0) if it is not on the line. Substitute it into the inequality and if it is true then it represents all points on that line as true and vice versa.
The solution to an inequality generally is a region with one more dimension. If the inequality/equation is of the form x < a or x = a then the solution to the inequality is the 1 dimensional line segment while the solution to the equality is a point which has no dimensions. If the inequality/equation is in 2 dimensions, the solution to the inequality is an area whereas the solution to the equality is a 1-d line or curve. And so on, in higher dimensional spaces.
The slope-intercept inequality is an equation of the form y < mx + c. The inequality can be reversed, and in both cases can be strict or not. In all cases the equality divides the Cartesian plane into two and the inequality determines which side of the straight line is the valid region, and whether or not the line itself should be included.
The line that includes whatever variables are included in the equation.
The graph of an inequality is a region, not a line.
It can represent the graph of a strict inequality where the inequality is satisfied by the area on one side of the dashed line and not on the other. Points on the line do not satisfy the inequality.
The line is dotted when the inequality is a strict inequality, ie it is either "less than" (<) or "greater than" (>). If there is an equality in the inequality, ie "less than or equal to" (≤), "greater than or equal to" (≥) or "equal to" (=) then the line is drawn as a solid line.
If the inequality has a > or ≥ sign, you shade above the line. If the inequality has a < or ≤ sign, you shade below it. Obviously, just an = is an equation, not an inequality.
Any compound inequality, in one variable, can be graphed on the number line.
Basically. If the inequality's sign is < or ≤, then you shade the part under the line. If the inequality's sign is > or ≥, then you shade the part over the line.
when graphing a line you simply plot the points based on the ordered pairs and connect the dots; there you have a line. An inequality graph refers to the shaded region of the coordinate plane that does not coincide with the line, hence the term, inequality.
If the points that are ON the line satisfy the inequality then the line should be solid. Otherwise it should be dotted. Another way of putting that is, if the inequality is given in terms of ≤ or ≥, then use a solid line. If they are < or > use a dotted line.
It depends upon the inequality. All points on the line are those which are equal, thus:If the inequality is (strictly) "less than" () then the points on the line are not included; howeverif the inequality is "less than or equals" (≤) or "greater than or equals" (≥) then the points on the line are included.
Pick a test point, (the origin is the most convenient unless the line of the inequality falls on it), and plug it into the same linear inequality. If the test point makes the inequality true, then shade that side of the line. If the test point makes the inequality false, then shade the opposite side of the line.
When graphing a linear inequality, the first step is to replace the inequality symbol with an equal sign to graph the corresponding linear equation. This creates a boundary line, which can be solid (for ≤ or ≥) or dashed (for < or >) depending on whether the points on the line are included in the solution set. After graphing the line, you then determine which side of the line represents the solution set by testing a point (usually the origin if it's not on the line) to see if it satisfies the original inequality. Finally, shade the appropriate region to indicate the solutions to the inequality.
To determine whether to use a solid or dotted line for a given inequality, check if the inequality includes equal to (≥ or ≤) or not (>) or (<). If it includes equal to, use a solid line; if not, use a dotted line. For the solution area, if the inequality is greater than (>) or greater than or equal to (≥), the solution lies above the line; for less than (<) or less than or equal to (≤), it lies below the line.