The coords are (6, 1).
To find the image of the point (1, -6) after a 180-degree counterclockwise rotation about the origin, you can use the rotation transformation. A 180-degree rotation changes the coordinates (x, y) to (-x, -y). Therefore, the image of the point (1, -6) is (-1, 6).
To rotate a point 180 degrees counterclockwise about the origin, you can simply change the signs of both the x and y coordinates of the point. For example, if the original point is (x, y), after the rotation, the new coordinates will be (-x, -y). This effectively reflects the point across the origin.
To rotate a figure 90 degrees clockwise around the origin on a coordinate grid, you can use the transformation rule: (x, y) becomes (y, -x). For the point (5, 5), applying this rule results in (5, -5). Therefore, after a 90-degree clockwise rotation, the new coordinates of the point are (5, -5).
To find the image of the point (5, 4) when rotated 180 degrees about the origin, you can apply the transformation that changes the signs of both coordinates. Thus, the new coordinates will be (-5, -4). Therefore, the image of the point (5, 4) after a 180-degree rotation about the origin is (-5, -4).
A 180° rotation is half a rotation and it doesn't matter if it is clockwise of counter clockwise. When rotating 180° about the origin, the x-coordinate and y-coordinates change sign Thus (1, -6) → (-1, 6) after rotating 180° around the origin.
The coords are (6, 1).
The rotation rule for a 180-degree counterclockwise rotation involves turning a point around the origin (0, 0) by half a circle. For any point (x, y), the new coordinates after this rotation become (-x, -y). This means that both the x and y coordinates are negated. For example, the point (3, 4) would rotate to (-3, -4).
(x; y) --> (x.cos45 + y.sin45; x.sin45 - y.cos45)
To rotate a figure 180 degrees clockwise, you can achieve this by first reflecting the figure over the y-axis and then reflecting it over the x-axis. This double reflection effectively rotates the figure 180 degrees clockwise around the origin.
The answer depends on whether the rotation is clockwise or anti-clockwise.For anti-clockwise rotation (the standard direction of rotation),old x-coordinate becomes new y-coordinate,old y-coordinate becomes minus new x-coordinate
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
270 rule represent a 270 rotation to the left which is very easy
To find the image of the point (5, 4) when rotated 180 degrees about the origin, you can apply the transformation that changes the signs of both coordinates. Thus, the new coordinates will be (-5, -4). Therefore, the image of the point (5, 4) after a 180-degree rotation about the origin is (-5, -4).
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
A rotation of 270 degrees clockwise is equivalent to a rotation of 90 degrees counterclockwise. In a Cartesian coordinate system, this means that a point originally at (x, y) will move to (y, -x) after the rotation. Essentially, it shifts the point three-quarters of the way around the origin in the clockwise direction.
That would depend on its original coordinates and in which direction clockwise or anti clockwise of which information has not been given.