For the first letter, you can choose any of the four.
For the second letter, you can choose any of the remaining three.
For the third letter, you can choose either of the remaining two.
For the fourth letter, you don't get a choice, you have to use the one that's left.
So 4x3x2x1 = 24 possible permutations.
The word "numbers" consists of 7 distinct letters. The number of permutations of these letters is calculated using the factorial of the number of letters, which is 7!. Therefore, the total number of permutations is 7! = 5,040.
Since there are no duplicate letters in the word RAINBOW, the number of permutations of those letters is simply the number of permutations of 7 things taken 7 at a time, i.e. 7 factorial, which is 5040.
The word "noon" consists of 4 letters, where 'n' appears twice and 'o' appears twice. To find the number of distinct permutations, we use the formula for permutations of multiset: ( \frac{n!}{n_1! \cdot n_2!} ), where ( n ) is the total number of letters and ( n_1, n_2 ) are the frequencies of the repeating letters. Thus, the number of permutations is ( \frac{4!}{2! \cdot 2!} = \frac{24}{4} = 6 ). Therefore, there are 6 distinct permutations of the letters in the word "noon."
The word "algrebra" has 8 letters, with the letter 'a' appearing twice and 'r' appearing twice. To find the number of distinguishable permutations, we use the formula for permutations of multiset: ( \frac{n!}{n_1! \times n_2!} ), where ( n ) is the total number of letters and ( n_1, n_2 ) are the frequencies of the repeating letters. Thus, the number of distinguishable permutations is ( \frac{8!}{2! \times 2!} = 10080 ). Since all letters are counted in this formula, there are no indistinguishable permutations in this context.
The word "freezer" has 7 letters, with the letter "e" appearing twice and the letter "r" appearing twice. The number of distinct permutations can be calculated using the formula for permutations of a multiset: ( \frac{n!}{n_1! , n_2! , \ldots , n_k!} ), where ( n ) is the total number of letters and ( n_i ) are the frequencies of the repeated letters. Thus, the number of permutations is ( \frac{7!}{2! \times 2!} = \frac{5040}{4} = 1260 ). Therefore, there are 1,260 distinct permutations of the word "freezer."
Since the word MATH does not have any duplicated letters, the number of permutations of those letters is simply the number of permutations of 4 things taken 4 at a time, or 4 factorial, or 24.
The solution is count the number of letters in the word and divide by the number of permutations of the repeated letters; 7!/3! = 840.
The number of permutations of the letters in the word LOUISIANA is 9 factorial or 362,880. However, since the letters I and A are each repeated once, you need to divide that by 4 to determine the number of distinct permutations, giving you 90,720.
UNITED = 6 letters The letters in the word UNITED did not repeat so the number of permutations = 6! = 6x5x4x3x2 =720
The word "numbers" consists of 7 distinct letters. The number of permutations of these letters is calculated using the factorial of the number of letters, which is 7!. Therefore, the total number of permutations is 7! = 5,040.
The number of permutations of the letters in the word SCHOOLS is the number of permutations of 7 things taken 7 at a time, which is 5040. However, since two of the letters, S and O, are duplicated, the number of distinct permutations is one fourth of that, or 1260.
Since there are no duplicate letters in the word RAINBOW, the number of permutations of those letters is simply the number of permutations of 7 things taken 7 at a time, i.e. 7 factorial, which is 5040.
The number of permutations of the letters SWIMMING is 8 factorial or 40,320. The number of distinct permutations, however, due to the duplication of the letters I and M is a factor of 4 less than that, or 10,080.
360. There are 6 letters, so there are 6! (=720) different permutations of 6 letters. However, since the two 'o's are indistinguishable, it is necessary to divide the total number of permutations by the number of permutations of the letter 'o's - 2! = 2 Thus 6! ÷ 2! = 360
The word "algrebra" has 8 letters, with the letter 'a' appearing twice and 'r' appearing twice. To find the number of distinguishable permutations, we use the formula for permutations of multiset: ( \frac{n!}{n_1! \times n_2!} ), where ( n ) is the total number of letters and ( n_1, n_2 ) are the frequencies of the repeating letters. Thus, the number of distinguishable permutations is ( \frac{8!}{2! \times 2!} = 10080 ). Since all letters are counted in this formula, there are no indistinguishable permutations in this context.
The word MATHEMATICS has 11 letters. The number of permutations of 11 things taken 11 at a time is 11 factorial (11!), or 39,916,800.
The word "greet" consists of 5 letters, where 'g', 'r', and 't' are unique, and 'e' appears twice. To find the number of distinct permutations, we use the formula for permutations of multiset: (\frac{n!}{n_1! \cdot n_2! \cdot \ldots}), where (n) is the total number of letters and (n_1, n_2, \ldots) are the frequencies of the repeated letters. Thus, the number of permutations is (\frac{5!}{2!} = \frac{120}{2} = 60).