The slope of the line is 1/4
So the values are t = -2 and v = 4
Because they satisfy the equation: (v-2)/6-t = 2/8 = 1/4
Their values work out as: a = -2 and b = 4
The values of p and q work out as -2 and 4 respectively thus complying with the given conditions.
Possible values: a = -2 and b = 9 or a = 5/2 and b = -9 Drawing a sketch on graph paper with the information already given helps.
Perpendicular equation: y = ax+14 Slope of line: 2-6/1-b = -1/a Multiply both sides by 1-b: -4 = -1+b/a By trial and improvement: -4 = -1+9/-2 By trial and improvement: -4 = -1-9/2.5 Therefore: a = -2 and b = 9 or a = 2.5 and b = -9
To satisfy the terms of the given equation the values of 'a' and 'b' are -2 and 4 respectively because:- End points: (-2, 2) and (6, 4) Midpoint: (2, 3) Slope: 1/4 Perpendicular slope: -4 Perpendicular equation: y-3 = -4(x-2) => y = -4x+11 or y+4 = 11
Their values work out as: a = -2 and b = 4
The values of p and q work out as -2 and 4 respectively thus complying with the given conditions.
They must be equidistant from the point of bisection which is their midpoint and works out that a = -2 and b = 4 Sketching the equations on the Cartesian plane will also help you in determining their values
Possible values: a = -2 and b = 9 or a = 5/2 and b = -9 Drawing a sketch on graph paper with the information already given helps.
If the points are (b, 2) and (6, c) then to satisfy the straight line equations it works out that b = -2 and c = 4 which means that the points are (-2, 2) and (6, 4)
Perpendicular equation: y = ax+14 Slope of line: 2-6/1-b = -1/a Multiply both sides by 1-b: -4 = -1+b/a By trial and improvement: -4 = -1+9/-2 By trial and improvement: -4 = -1-9/2.5 Therefore: a = -2 and b = 9 or a = 2.5 and b = -9
To satisfy the terms of the given equation the values of 'a' and 'b' are -2 and 4 respectively because:- End points: (-2, 2) and (6, 4) Midpoint: (2, 3) Slope: 1/4 Perpendicular slope: -4 Perpendicular equation: y-3 = -4(x-2) => y = -4x+11 or y+4 = 11
8
No, these are of different values.
mean
y = x This is a line and a function. Function values are y values.
7x + 10y = 4.5 : 10y = -7x + 4.5 : y = -x.7/10 + 0.45, the gradient of this line is -7/10 Two straight lines are perpendicular if the product of their gradients is -1. Let the equation for the perpendicular line be y = mx + c Then m x -7/10 = -1 : m = 10/7 The equation for the perpendicular line is y = x.10/7 + c If the values of x and y for the point of intersection are provided then these can be substituted in the perpendicular line equation and the value of c obtained. If appropriate, the equation can then be restructured to a format similar to the original equation.