No, (sinx)^2 + (cosx)^2=1 is though
1
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)
You could just pull out the half: it will be (1/2) cos squared x.
The answer is 1. sin^2 x cos^2/sin^2 x 1/cos^2 cos^2 will be cancelled =1 sin^2 also will be cancelled=1 1/1 = 1
22
2 x cosine squared x -1 which also equals cos (2x)
No, (sinx)^2 + (cosx)^2=1 is though
Multiply both sides by sin(1-cos) and you lose the denominators and get (sin squared) minus 1+cos times 1-cos. Then multiply out (i.e. expand) 1+cos times 1-cos, which will of course give the difference of two squares: 1 - (cos squared). (because the cross terms cancel out.) (This is diff of 2 squares because 1 is the square of 1.) And so you get (sin squared) - (1 - (cos squared)) = (sin squared) + (cos squared) - 1. Then from basic trig we know that (sin squared) + (cos squared) = 1, so this is 0.
If x = sin θ and y = cos θ then: sin² θ + cos² θ = 1 → x² + y² = 1 → x² = 1 - y²
1
tan^2(x) Proof: cos^2(x)+sin^2(x)=1 (Modified Pythagorean theorem) sin^2(x)=1-cos^2(x) (Property of subtraction) cos^2(x)-1/cos^2(x)=? sin^2(x)/cos^2(x)=? (Property of substitution) sin(x)/cos(x) * sin(x)/cos(x) = tan(x) * tan(x) (Definition of tanget) = tan^2(x)
sin squared
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)
You could just pull out the half: it will be (1/2) cos squared x.
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0