The expression "2a c" typically represents the product of three variables: 2, (a), and (c). It can be interpreted as multiplying the coefficient 2 by the variable (a) and the variable (c). Without additional context, it doesn't have a specific numerical value. If (a) and (c) are known, you can substitute those values to calculate the result.
The quadratic formula originated from the concept of completing the square. let's take ax2 + bx + c = 0. To complete the square, solve for x. Subtract c. ax2 + bx = -c. Then divide by a [notice- if there is no a value, then a=1]. x2 + bx/a = -c/a. Add (b/2a)2 to both sides. x2 + bx/a + b2/4a2 = -c/a + b2/4a2 Factor/Reformat. (x + b/2a)2 = (b2-4ac) / 4a2 (x + b/2a)2 = [(b2-4ac) / 2a]2 Square-root both sides. x + b/2a = ± √(b2-4ac) / 2a Subtract b/2a. x = -b/2a ± √(b2-4ac) / 2a Combine terms. x = [-b ± √(b2-4ac)] / 2a
The essence of the proof is simply to complete the square for a generalised quadratic equation. Like this:ax2 + bx + c = 0Take 'a' outside:a[x2 + bx/a + c/a] = 0Divide through by 'a':x2 + bx/a + c/a = 0Complete the square:(x + b/2a)2 - b2/4a2 + c/a = 0Rearrange to find x:(x + b/2a)2 = b2/4a2 - c/ax + b/2a = (+/-)sqrt[b2/4a2 - c/a]x = -b/2a (+/-) sqrt[b2/4a2 - c/a]Finally, fiddle around so that (1/2a) can be taken out as a common factor:x = -b/2a (+/-) sqrt[b2/4a2 - 4ac/4a2]x = -b/2a (+/-) sqrt[(1/4a2)(b2 - 4ac)]x = -b/2a (+/-) sqrt(1/4a2)sqrt(b2 - 4ac)x = -b/2a (+/-) (1/2a)sqrt(b2 - 4ac)x = [ -b (+/-) sqrt(b2 - 4ac) ] / 2a.
A+c= 2a+b
x=(-b+sqrt(b^2-4*a*c))/(2a) and (-b-sqrt(b^2-4*a*c))/(2a) (This is called the quadratic formula)
3.0
2a + 2b = c subtract 2a from both sides 2a - 2a + 2b = c - 2a 2b = c - 2a divide both sides by 2 (2/2)b = (c - 2a)/2 b = (c - 2a)/2 --------------------
:a = .5(hb+c) :2a = hb+c :2a−c = hb :(2a−c)/h = b
a= (+a) or a= (-) b= 2a b= 2a c= (-a) c= (+a)
The question refers to the equation of a parabola, that is, a quadratic equation of the form y = ax2 + bx + c. Suppose x1 = -b/2a - z and x2 = -b/2a + z for some real number z. Then y1 = a*(-b/2a - z)2 + b*(-b/2a - z) + c = b2/4a + bz + az2 - b2/2a - bz + c = b2/4a + az2 - b2/2a + c and y2 = (-b/2a + z)2 + b*(-b/2a + z) + c = b2/4a - bz + az2 - b2/2a + bz + c = b2/4a + az2 - b2/2a + c So y1 = y2 thus, if x is the same distance (z) either side of -b/2a, then the corresponding y values are the same. And that, is what a line of symmetry means.
-b/2a. i think.To show this, consider this equation:y = ax² + bx + cFactor out the a:y = a(x² + bx/a + c/a)Then, complete the squares to get:y = a(x² + bx/a + (b/(2a))² + c/a - (b/(2a))²)= a((x + (b/2a))² + c/a - (b/(2a))²)= a(x + (b/2a))² + c - b/(4a)By the vertex form:y = a(x - h)² + k where x = h is the axis of symmetry.So the general axis of symmetry for the quadratic equation is x = -b/(2a).
The quadratic formula originated from the concept of completing the square. let's take ax2 + bx + c = 0. To complete the square, solve for x. Subtract c. ax2 + bx = -c. Then divide by a [notice- if there is no a value, then a=1]. x2 + bx/a = -c/a. Add (b/2a)2 to both sides. x2 + bx/a + b2/4a2 = -c/a + b2/4a2 Factor/Reformat. (x + b/2a)2 = (b2-4ac) / 4a2 (x + b/2a)2 = [(b2-4ac) / 2a]2 Square-root both sides. x + b/2a = ± √(b2-4ac) / 2a Subtract b/2a. x = -b/2a ± √(b2-4ac) / 2a Combine terms. x = [-b ± √(b2-4ac)] / 2a
The quadratic formula originated from the concept of completing the square. let's take ax2 + bx + c = 0. To complete the square, solve for x. Subtract c. ax2 + bx = -c. Then divide by a [notice- if there is no a value, then a=1]. x2 + bx/a = -c/a. Add (b/2a)2 to both sides. x2 + bx/a + b2/4a2 = -c/a + b2/4a2 Factor/Reformat. (x + b/2a)2 = (b2-4ac) / 4a2 (x + b/2a)2 = [(b2-4ac) / 2a]2 Square-root both sides. x + b/2a = ± √(b2-4ac) / 2a Subtract b/2a. x = -b/2a ± √(b2-4ac) / 2a Combine terms. x = [-b ± √(b2-4ac)] / 2a
The essence of the proof is simply to complete the square for a generalised quadratic equation. Like this:ax2 + bx + c = 0Take 'a' outside:a[x2 + bx/a + c/a] = 0Divide through by 'a':x2 + bx/a + c/a = 0Complete the square:(x + b/2a)2 - b2/4a2 + c/a = 0Rearrange to find x:(x + b/2a)2 = b2/4a2 - c/ax + b/2a = (+/-)sqrt[b2/4a2 - c/a]x = -b/2a (+/-) sqrt[b2/4a2 - c/a]Finally, fiddle around so that (1/2a) can be taken out as a common factor:x = -b/2a (+/-) sqrt[b2/4a2 - 4ac/4a2]x = -b/2a (+/-) sqrt[(1/4a2)(b2 - 4ac)]x = -b/2a (+/-) sqrt(1/4a2)sqrt(b2 - 4ac)x = -b/2a (+/-) (1/2a)sqrt(b2 - 4ac)x = [ -b (+/-) sqrt(b2 - 4ac) ] / 2a.
A+c= 2a+b
A quadratic function is of the form: f(x) = ax2 + bx + c where a ≠0 If a > 0 then the quadratic has a minimum but its maximum, asymptotically, is +∞. If a < 0 then the quadratic has a maximum but its minimum, asymptotically, is -∞. The extremum (whichever it is) is attained when x = -b/2a. The extreme value is f(-b/2a) = a*(-b/2a)2 + b(-b/2a) + c = b2/4a - b2/2a + c = -b2/4a + c
Your notation is confusing. It looks like: 8a3 + 4a2b - 2ab2 - b3. So if you look at it, notice 23 = 8 & 22 = 4, so take c = (2*a), and you have c3 + c2b - cb2 - b3, Now note that if c = b, the polynomial is zero, so (c-b) or (b-c) is a factor. So divide by (c-b) using long division: (c - b)(c2 + 2cb + b2) {the second polynomial is a perfect square: (c+b)2}, so (c-b)(c+b)2, then substitute c = 2a, and get (2a-b)(2a+b)2 finally, multiply it out to make sure you get the original polynomial.
2a(2b-c) :P