answersLogoWhite

0


Best Answer

A simple example is:

x4-1=0

This factors into:

(x-1)(x+1)(x-i)(x+i)=0, so

x=1 OR x=-1 OR x=i OR x=-i

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is an equation that has 2 real and 2 imaginary zeros?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Where do you find complex numbers in algebra?

Certain functions, when solving to find the zeros (value which makes the function equal zero), the only value which will work has an imaginary component. Note that a parabola (graph of a quadratic or 2nd order polynomial) can touch the x-axis at a single point, or 2 points or no points. If it does not touch or cross the x-axis, then the root (or zeros) of the function are complex with imaginary components.Technically, all real numbers are a subset of complex numbers, so all numbers are complex - but this is not how we normally refer to them. We usually say that a number is real, or it is imaginary, or it is complex.


Which number belongs to the set of imaginary numbers 2?

2 does belong to the set of imaginary numbers. Any real number is also imaginary. Imaginary numbers are the set of all numbers that can be expressed as a +b*i where "i" is the square root of negative one and "a" and "b" are both real numbers.


What is an example of an integer that is a real number?

Any integer is a real, ...-3,-2,-1,0,1,2,3,4... etc, as they have no imaginary component.


How do you find the zeros in a parabola?

If the equation of the parabola isy = ax^2 + bx + c then the roots are [-b +/- sqrt(b^2-4ac)]/(2a)


When are these kinds of numbers solutions to quadratic equations?

You need to be more specific. A quadratic equation will have 2 solutions. The 2 solutions can be equal (such as x&sup2; + 2x + 1 = 0, solution is -1 and -1). If one of the solutions is a real number, then the other solution will also be a real number. If one of the solutions is a complex number, then the other solution will also be a complex number. [a complex number has a real component and an imaginary component]In the equation: Ax&sup2; + Bx + C = 0. The term [B&sup2; - 4AC] will determine if the solution is a double-root, or if the answer is real or complex.if B&sup2; = 4AC, then a double-root (real).if B&sup2; > 4AC, then 2 real rootsif B&sup2; < 4AC, then the quadratic formula will produce a square root of a negative number, and the solution will be 2 complex numbers.If B = 0, then the numbers will be either pure imaginary or real, and negatives of each other [ example 2i and -2i are solutions to x&sup2; + 4 = 0]Example of 2 real and opposite sign: x&sup2; - 4 = 0; 2 and -2 are solutions.

Related questions

Find all real and imaginary solutions to each equation?

(3z-2)^2=4


Is it possible to have a quadratic function with one real zero and one imaginary zero why or why not?

ax2+bx+c=0 with a,b and c real discriminant D=b2-4ac if D &gt;0 then there are 2 real zeros if D = 0 then there is one real zero if D&lt;0 then there are two imaginary zeros There are no other possibility for D For further information search for fundamental theorem of algebra


How would you express the zeros of the equation x2 - 2 equals 0 Are the two zeros of this equation integers rational numbers or irrational numbers?

x = sqrt(2). The zeros are irrational.


What happens if there are no zeros in a quadratic function?

Whether or not a function has zeros depends on the domain over which it is defined.For example, the linear equation 2x = 3 has no zeros if the domain is the set of integers (whole numbers) but if you allow rational numbers then x = 1.5 is a zero.A quadratic function such as x^2 = 2 has no rational zeros, but it does have irrational zeros which are sqrt(2) and -sqrt(2).Similarly, a quadratic equation need not have real zeros. It will have zeros if the domain is extended to the complex field.In the coordinate plane, a quadratic without zeros will either be wholly above the horizontal axis or wholly below it.


What is An equation that is true for NO values of the variable.?

It is an equation which is insoluble in its domain. However, it may be soluble in a bigger domain.For example, x2 = 2 has no solution in the domain of rational numbers but it does in the real numbers, orx2 = -2 has no solution in the domain of real number but it does in imaginary numbers.


What is x2 -2x plus 2 equals 0?

It is a quadratic equation with no real roots or real solutions. In the complex domain, the solutions are 1 +/- i where i is the imaginary square root of -1.


What are examples of quadratic formula with 2 imaginary roots?

A quadratic equation has the form: x^2 - (sum of the roots)x + (product of the roots) = 0 If the roots are imaginary roots, these roots are complex number a+bi and its conjugate a - bi, where a is the real part and b is the imaginary part of the complex number. Their sum is: a + bi + a - bi = 2a Their product is: (a + bi)(a - bi) = a^2 + b^2 Thus the equation will be in the form: x^2 - 2a(x) + a^2 + b^2 = 0 or, x^2 - 2(real part)x + [(real part)^2 + (imaginary part)^2]= 0 For example if the roots are 3 + 5i and 3 - 5i, the equation will be: x^2 - 2(3)x + 3^2 + 5^2 = 0 x^2 - 6x + 34 = 0 where, a = 1, b = -6, and c = 34. Look at the denominator of this quadratic equation: D = b^2 - 4ac. D = (-6)^2 - (4)(1)(34) = 36 - 136 = -100 D &lt; 0 Since D &lt; 0 this equation has two imaginary roots.


How many real and imaginary solutions does the equation 2x2 -7x plus 9 equals x plus 1 have?

It has two equal solutions for x which are x = 2 and x = 2


If an equation has a degree of three how many solutions will there be?

An equation with a degree of three typically has three solutions. However, it is possible for one or more of those solutions to be repeated or complex.


Where do you find complex numbers in algebra?

Certain functions, when solving to find the zeros (value which makes the function equal zero), the only value which will work has an imaginary component. Note that a parabola (graph of a quadratic or 2nd order polynomial) can touch the x-axis at a single point, or 2 points or no points. If it does not touch or cross the x-axis, then the root (or zeros) of the function are complex with imaginary components.Technically, all real numbers are a subset of complex numbers, so all numbers are complex - but this is not how we normally refer to them. We usually say that a number is real, or it is imaginary, or it is complex.


Which number belongs to the set of imaginary numbers 2?

2 does belong to the set of imaginary numbers. Any real number is also imaginary. Imaginary numbers are the set of all numbers that can be expressed as a +b*i where "i" is the square root of negative one and "a" and "b" are both real numbers.


Is a fraction a real number?

It can be but it need not be. For example, i/2, where i is the imaginary sqrt of -1, is not real.