Cos times Cos
Chat with our AI personalities
The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.
(1/8)(x-sin 4x)
sqrt(3sin(x)=cos(x)=0 // Square both sides3sin(x) + cos(x) = 0 // subtract cos(x) from both sides3sin(x) = -cos(x) // rearrangesin(x)/cos(x) = -1/3 //sin(x)/cos(x) = tan(x)tan(x) = -1/3x = tan^-1(-1/3) == -18,43484882 // tan^-1(inverse tan)
If you mean: sin2(x) cos2(x) then it can be simplified by noting that the square of the sine of x is equal to (1 - cos(2x)) ÷ 2 and the square of the cosine of x is equal to (1 + cos(2x)) ÷ 2. We can then simplify further: sin(x)2cos(x)2 = [(1 - cos(2x)) / 2][(1 + cos(2x)) / 2] = (1 - cos(2x))(1 + cos(2x)) / 2 = (1 - cos2(2x)) / 2 Also note that 1 - cos2(x) = sin2(x), so we can then say: = sin2(2x) / 2
cos A=3/5 sin=square root of (1-cos2) sin=square root of (1-3/52) sin=square root of (1-9/25) sin=square root of (16/25) sin=4/5 csc=1/sin csc=1/(4/5) csc=5/4