to find sin 35 here we take the angle = x=15 then 3x=45 , 4x=60 then 4x-3x=60-45 then by putting sin on rhs we will get cos 35 and sin 35 hope it helped you
Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
Sin A must be a number whose absolute value cannot exceed 1 and so it cannot be 35.
The side opposite the 35° angle is [ 20 sin(35) ] = 11.472 (rounded)
Unfortunately, the browser used for posting questions is hopelessly inadequate for mathematics: it strips away most symbols. All that we can see is "sin(-1)sin((5pi )(7))". From that it is not at all clear what the missing symbols (operators) between (5pi ) and (7) might be. There is, therefore no sensible answer. It makes little sense for me to try and guess - I may as well make up my own questions and answer them!All that I can tell you that the principal sin-1 is the inverse for sin over the domain (-pi/2, pi/2). Thus sin-1(sin(x) = x where -pi/2 < x
sin(35 deg) = 0.5736
cos(35)sin(55)+sin(35)cos(55) If we rewrite this switching the first and second terms we get: sin(35)cos(55)+cos(35)sin(55) which is a more common form of the sin sum and difference formulas. Thus this is equal to sin(90) and sin(90)=1
to find sin 35 here we take the angle = x=15 then 3x=45 , 4x=60 then 4x-3x=60-45 then by putting sin on rhs we will get cos 35 and sin 35 hope it helped you
In degrees? cos(35˚) = .81915, sin(24˚) = .40673;cos(35˚) * sin(24˚) = .33318In radians? cos(35) = -.90367, sin(24) = -.90558;cos(35) * sin(24) = .81836A calculator will achieve these results faster than wiki.answers. 9 times out of 10, at least.:-)
Every angle has a sine and a cosine. The sine of 35 degrees is 0.57358 (rounded) The cosine of 35 degrees is 0.81915 (rounded)
Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
Sin A must be a number whose absolute value cannot exceed 1 and so it cannot be 35.
Rey Mysterio Was Born 11 December 1974 .... Making Him 35
The side opposite the 35° angle is [ 20 sin(35) ] = 11.472 (rounded)
Using trigonometry it is 44.76*sin(35 degrees) = 25.673 feet to 3 decimal places
The angle of refraction can be calculated using Snell's Law: n₁sin(θ₁) = n₂sin(θ₂), where n₁ is the refractive index of air (1.00), θ₁ is the angle of incidence (35 degrees), n₂ is the refractive index of the plastic (1.49), and θ₂ is the angle of refraction. Plugging in the values gives: (1.00)sin(35) = (1.49)sin(θ₂). Solving for θ₂ gives an angle of refraction of approximately 23.6 degrees.
Unfortunately, the browser used for posting questions is hopelessly inadequate for mathematics: it strips away most symbols. All that we can see is "sin(-1)sin((5pi )(7))". From that it is not at all clear what the missing symbols (operators) between (5pi ) and (7) might be. There is, therefore no sensible answer. It makes little sense for me to try and guess - I may as well make up my own questions and answer them!All that I can tell you that the principal sin-1 is the inverse for sin over the domain (-pi/2, pi/2). Thus sin-1(sin(x) = x where -pi/2 < x