answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is tan x differentiated?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is cos x tan x simlpified?

The definition of tan(x) = sin(x)/cos(x). By this property, cos(x)tan(x) = sin(x).


If for a triangle abc tan a-b plus tan b-c plus tan c-a equals 0 then what can you say about the triangle?

tan (A-B) + tan (B-C) + tan (C-A)=0 tan (A-B) + tan (B-C) - tan (A-C)=0 tan (A-B) + tan (B-C) = tan (A-C) (A-B) + (B-C) = A-C So we can solve tan (A-B) + tan (B-C) = tan (A-C) by first solving tan x + tan y = tan (x+y) and then substituting x = A-B and y = B-C. tan (x+y) = (tan x + tan y)/(1 - tan x tan y) So tan x + tan y = (tan x + tan y)/(1 - tan x tan y) (tan x + tan y)tan x tan y = 0 So, tan x = 0 or tan y = 0 or tan x = - tan y tan(A-B) = 0 or tan(B-C) = 0 or tan(A-B) = - tan(B-C) tan(A-B) = 0 or tan(B-C) = 0 or tan(A-B) = tan(C-B) A, B and C are all angles of a triangle, so are all in the range (0, pi). So A-B and B-C are in the range (- pi, pi). At this point I sketched a graph of y = tan x (- pi < x < pi) By inspection I can see that: A-B = 0 or B-C = 0 or A-B = C-B or A-B = C-B +/- pi A = B or B = C or A = C or A = C +/- pi But A and C are both in the range (0, pi) so A = C +/- pi has no solution So A = B or B = C or A = C A triangle ABC has the property that tan (A-B) + tan (B-C) + tan (C-A)=0 if and only if it is isosceles (or equilateral).


Verify the identity sinx cotx - cosx divided by tanx equals 0?

(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0


What is dydx of sincostanx?

If y = sin(cos(tan(x))) Using the chain rule: (f(g(x)))' = f'(g(x)).g'(x) Then dy/dx = cos(cos(tan(x))).-sin(tan(x)).sec2(x) = -cos(cos(tan(x))).sin(tan(x)).sec2(x) Unfortunately I don't think this can be simplified much more. ( sec = 1/cos )


How Tan1Tan20Tan45tan60Tan79 is equal to 1?

It isn't, but here is a corrected equation that is: tan1 x tan 20 x tan 45 x tan 70 x tan 89 = 1 It will then work because tan(45 + x) = 1/tan(45 - x). Hence tan1 cancels when multiplied with tan89, and tan20 cancels with tan70. tan 45 equals 1, and so the whole expression cancels to 1. I think this effect was what the equation was intended to demonstrate.

Related questions

Sec x times sin x divided by tan x?

1 (sec x)(sin x /tan x = (1/cos x)(sin x)/tan x = (sin x/cos x)/tan x) = tan x/tan x = 1


What is the answer to cot squared x - tan squared x equals 0?

cot2x-tan2x=(cot x -tan x)(cot x + tan x) =0 so either cot x - tan x = 0 or cot x + tan x =0 1) cot x = tan x => 1 / tan x = tan x => tan2x = 1 => tan x = 1 ou tan x = -1 x = pi/4 or x = -pi /4 2) cot x + tan x =0 => 1 / tan x = -tan x => tan2x = -1 if you know about complex number then infinity is the solution to this equation, if not there's no solution in real numbers.


Which expression has the same value as tan(-x) for all values for x?

tan(-x) = -tan(x)


How can arccot of tanx be simplified?

There is not much that can be done by way of simplification. Suppose arccot(y) = tan(x) then y = cot[tan(x)] = 1/tan(tan(x)) Now cot is NOT the inverse of tan, but its reciprocal. So the expression in the first of above equation cannot be simplified further. Similarly tan[tan(x)] is NOT tan(x)*tan(x) = tan2(x)


Sin x Tan x equals Sin x?

No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)


What does cos divided by sin equal?

tan x


What is tan x csc x?

tan(x)*csc(x) = sec(x)


What is cos x tan x simlpified?

The definition of tan(x) = sin(x)/cos(x). By this property, cos(x)tan(x) = sin(x).


If for a triangle abc tan a-b plus tan b-c plus tan c-a equals 0 then what can you say about the triangle?

tan (A-B) + tan (B-C) + tan (C-A)=0 tan (A-B) + tan (B-C) - tan (A-C)=0 tan (A-B) + tan (B-C) = tan (A-C) (A-B) + (B-C) = A-C So we can solve tan (A-B) + tan (B-C) = tan (A-C) by first solving tan x + tan y = tan (x+y) and then substituting x = A-B and y = B-C. tan (x+y) = (tan x + tan y)/(1 - tan x tan y) So tan x + tan y = (tan x + tan y)/(1 - tan x tan y) (tan x + tan y)tan x tan y = 0 So, tan x = 0 or tan y = 0 or tan x = - tan y tan(A-B) = 0 or tan(B-C) = 0 or tan(A-B) = - tan(B-C) tan(A-B) = 0 or tan(B-C) = 0 or tan(A-B) = tan(C-B) A, B and C are all angles of a triangle, so are all in the range (0, pi). So A-B and B-C are in the range (- pi, pi). At this point I sketched a graph of y = tan x (- pi < x < pi) By inspection I can see that: A-B = 0 or B-C = 0 or A-B = C-B or A-B = C-B +/- pi A = B or B = C or A = C or A = C +/- pi But A and C are both in the range (0, pi) so A = C +/- pi has no solution So A = B or B = C or A = C A triangle ABC has the property that tan (A-B) + tan (B-C) + tan (C-A)=0 if and only if it is isosceles (or equilateral).


What is the derivative of tan x?

The derivative of tan(x) is sec2(x).(Which is the same as 1/cos2(x).


Verify the identity sinx cotx - cosx divided by tanx equals 0?

(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0


How do you prove tan x plus tan x sec 2x equals tan 2x?

tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x