cos(xx)?
d/dx(cosu)=-sin(u)*d/dx(u)
d/dx(cos(xx))=-sin(xx)*d/dx(xx)
-The derivative of xx is:
y=xx ;You have to use implicit derivation because there is no formula for taking the derivative of uu.
lny=lnxx
lny=xlnx
-The derivative of lnx is:
d/dx(lnu)=(1/u)*d/dx(u)
-d/dx(uv)= u*dv/dx+v*du/dx
Therefore:
(1/y)*dy/dx=x*[(1/x)*d/dx(x)]+lnx(d/dx(x))
-The derivative of x is:
d/dx(xn)=nxn-1
d/dx(x)=1*x1-1
d/dx(x)=1*x0
d/dx(x)=1*(1)
d/dx(x)=1
(1/y)*dy/dx=x*[(1/x)*(1)]+lnx(1)
(1/y)*dy/dx=x*[(1/x)]+lnx
(1/y)*dy/dx=(x/x)+lnx
(1/y)*dy/dx=1+lnx
dy/dx=y(1+lnx) ;Multiply y to both sides
dy/dx=xx(1+lnx) ;y=xx, so replace the y with xx
d/dx(cos(xx))=-sin(xx)*[xx*(1+lnx)]
d/dx(cos(xx))=-(1+lnx)*xx*sin(xx)
(cosx)x?
Again with the implicit derivation:
y=(cosx)x
lny=x*ln(cosx)
(1/y)*dy/dx=x[d/dx(lncosx)]+lncosx(d/dx(x))
(1/y)*dy/dx=x[(1/cosx)*(-sinx)(1)]+lncosx(1) ;The derivative of lncosx is (1/cosx)*d/dx(cosx). The derivative of cosx is (-sinx)*d/dx (x). The derivative of x is 1.
(1/y)*dy/dx=x[(1/cosx)*(-sinx)]+lncosx
(1/y)*dy/dx=x[-tanx]+lncosx
(1/y)*dy/dx=-xtanx+lncosx
dy/dx=y(-xtanx+lncosx) ;Multiply both sides by y
dy/dx=(cosx)x(-xtanx+lncosx) ;y=(cosx)x, replace all y's with (cosx)x
dy/dx=(cosx)x(-xtanx+lncosx)=(cosx)x-1(cosx*lncosx-xsinx)
Chat with our AI personalities
(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.
The derivative of sin (x) is cos (x). It does not work the other way around, though. The derivative of cos (x) is -sin (x).
Write sec x as a function of sines and cosines (in this case, sec x = 1 / cos x). Then use the division formula to take the first derivative. Take the derivative of the first derivative to get the second derivative. Reminder: the derivative of sin x is cos x; the derivative of cos x is - sin x.
(3sin(x)^2)(Cos(x))
You can use the rule for multiplying derivatives.