-cos(x)
Chat with our AI personalities
The antiderivative of 9sinx is simply just -9cosx. It is negetive because the derivative of cosx should have been -sinx, however, the derivative provided is positive. Therefore, it means that there should be a negative with cosx in order to make that sinx postive. (negative times negative eguals positive)
take out the constant -2 then take the intergral of cosx this will give you sinx your answer is -2sinx
The anti derivative of negative sine is cosine.
When you solve for the 2nd derivative, you are determining whether the function is concave up/down. If you calculated that the 2nd derivative is negative, the function is concave down, which means you have a relative/absolute maximum, given that the 1st derivative equals 0. To understand why this is, think about the definition of the 2nd derivative. It is a measure of the rate of change of the gradient. At a maximum, the gradient starts positive, becomes 0 at the maximum itself and then becomes negative, so it is decreasing. If the gradient is going down, then its rate of change, the 2nd derivative, must be negative.
- e^- X