9.8m/s/s
-BHS
Chat with our AI personalities
If d = 16*t^2 then there is no significant air resistance.
Changing at a constant rate equal to acceleration.
Surface area is ONE thing that can affect how fast an object falls. Two forces determine how fast an object falls - the force of gravity and the opposing drag on the object from the medium it is falling through. In the case of an object falling in a vacuum, there is no drag so the object falls strictly according to the law of gravity. If an object is dropped through a fluid such as air or water, it can reach a terminal velocity where the force of gravity is exactly counterbalanced by the opposing drag on the object. In this case acceleration ceases - although motion does not. In other words, the object continues to fall, but it doesn't speed up. Drag force is a function of object velocity, viscosity of the fluid it is falling through, the surface area of the falling object, the surface roughness of the falling object, and the geometry of the falling object (spheres usually have less drag than cubes for example).
The frequency distribution usually refers to empirical measurement and there is no formula for finding it. You simply count the number of times an observation falls within a given range.
When an object falls vertically downward, its velocity increases according to the following equation:2aS=vf2 - vi2 or ,2*10*S=v2, orv=(20S)1/2.There is a second case in which a body is thrown vertically upward, here its velocity decreases as it moves upward. Here its velocity becomes zero as it reaches the highest point