An relation is equivalent if and only if it is symmetric, reflexive and transitive. That is, if a ~ b and b ~a, if a ~ a, and if a ~ b, and b ~ c, then a ~ c.
Could you be more specific? An equivalence relation effectively partitions a set into nonoverlapping subsets.
An equivalence relationship is a relationship over the set of integers defined for as follows:For equivalence modulo n (n being a positive integer),a ~ b (mod n) n divides (a-b)This partitions the set of integers into n equivalence classes: {0, 1, 2, ... , n-1}.
Establishing equivalence depends on the definition of parallel lines. If they are defined as lines which cannot ever meet (have no point in common), then the relation is not reflexive and so cannot be an equivalence relation.However, if the lines are in a coordinate plane and parallel lines are defined as those which have the same gradient then:the gradient of a is the gradient of a so the relationship is reflexive ie a ~ a.if the gradient of a is m then b is parallel to a if gradient of b = m and, if the gradient of b is m then b is parallel to a. Thus the relation ship is symmetric ie a ~ b b ~ a.If the gradient of a is m then b is parallel to a if and only if gradient of b = gradient of a, which is m. Also c is parallel to b if and only if gradient of c = gradient of b which is m. Therefore c is parallel to a. Thus the relation is transitive, that is a ~ b and b ~ c => a ~ c.The relation is reflexive, symmetric and transitive and therefore it is an equivalence relationship.
16
An equivalence relation ~ on A partitions into pairwise disjoint subsets called equivalence classes so that 1. Within each class, every pair relates 2. Between classes there is no relation i.e. [x] = {a (element) A | a~x} and given two equivalence classes [a] and [b], either [a] = [b] or [a] intersect [b] = the empty set
An relation is equivalent if and only if it is symmetric, reflexive and transitive. That is, if a ~ b and b ~a, if a ~ a, and if a ~ b, and b ~ c, then a ~ c.
Could you be more specific? An equivalence relation effectively partitions a set into nonoverlapping subsets.
First, let's define an equivalence relation. An equivalence relation R is a collection of elements with a binary relation that satisfies this property:Reflexivity: ∀a ∈ R, a ~ aSymmetry: ∀a, b ∈ R, if a ~ b, then b ~ aTransitivity: ∀a, b, c ∈ R, if a ~ b and b ~ c, then a ~ c.
An equivalence relationship is a relationship over the set of integers defined for as follows:For equivalence modulo n (n being a positive integer),a ~ b (mod n) n divides (a-b)This partitions the set of integers into n equivalence classes: {0, 1, 2, ... , n-1}.
An equivalence relation r on a set U is a relation that is symmetric (A r Bimplies B r A), reflexive (Ar A) and transitive (A rB and B r C implies Ar C). If these three properties are true for all elements A, B, and C in U, then r is a equivalence relation on U.For example, let U be the set of people that live in exactly 1 house. Let r be the relation on Usuch that A r B means that persons A and B live in the same house. Then ris symmetric since if A lives in the same house as B, then B lives in the same house as A. It is reflexive since A lives in the same house as him or herself. It is transitive, since if A lives in the same house as B, and B lives in the same house as C, then Alives in the same house as C. So among people who live in exactly one house, living together is an equivalence relation.The most well known equivalence relation is the familiar "equals" relationship.
At half equivalence (half neutralisation) pH=pK.
Establishing equivalence depends on the definition of parallel lines. If they are defined as lines which cannot ever meet (have no point in common), then the relation is not reflexive and so cannot be an equivalence relation.However, if the lines are in a coordinate plane and parallel lines are defined as those which have the same gradient then:the gradient of a is the gradient of a so the relationship is reflexive ie a ~ a.if the gradient of a is m then b is parallel to a if gradient of b = m and, if the gradient of b is m then b is parallel to a. Thus the relation ship is symmetric ie a ~ b b ~ a.If the gradient of a is m then b is parallel to a if and only if gradient of b = gradient of a, which is m. Also c is parallel to b if and only if gradient of c = gradient of b which is m. Therefore c is parallel to a. Thus the relation is transitive, that is a ~ b and b ~ c => a ~ c.The relation is reflexive, symmetric and transitive and therefore it is an equivalence relationship.
16
It is the set on which the relation is defined to the set which is known as the range.
If a set of ordered pairs is not a relation, the set can still be a function.
A relation doesn't have an "output value", in the sense that a function does. A set of values is either part of the relation, or it isn't.