An equivalence relation on a set is one that is transitive, reflexive and symmetric. Given a set A with n elements, the largest equivalence relation is AXA since it has n2 elements. Given any element a of the set, the smallest equivalence relation is (a,a) which has n elements.
Chat with our AI personalities
An relation is equivalent if and only if it is symmetric, reflexive and transitive. That is, if a ~ b and b ~a, if a ~ a, and if a ~ b, and b ~ c, then a ~ c.
Could you be more specific? An equivalence relation effectively partitions a set into nonoverlapping subsets.
An equivalence relationship is a relationship over the set of integers defined for as follows:For equivalence modulo n (n being a positive integer),a ~ b (mod n) n divides (a-b)This partitions the set of integers into n equivalence classes: {0, 1, 2, ... , n-1}.
16
Establishing equivalence depends on the definition of parallel lines. If they are defined as lines which cannot ever meet (have no point in common), then the relation is not reflexive and so cannot be an equivalence relation.However, if the lines are in a coordinate plane and parallel lines are defined as those which have the same gradient then:the gradient of a is the gradient of a so the relationship is reflexive ie a ~ a.if the gradient of a is m then b is parallel to a if gradient of b = m and, if the gradient of b is m then b is parallel to a. Thus the relation ship is symmetric ie a ~ b b ~ a.If the gradient of a is m then b is parallel to a if and only if gradient of b = gradient of a, which is m. Also c is parallel to b if and only if gradient of c = gradient of b which is m. Therefore c is parallel to a. Thus the relation is transitive, that is a ~ b and b ~ c => a ~ c.The relation is reflexive, symmetric and transitive and therefore it is an equivalence relationship.