When dividing complex numbers you must:Write the problem in fractional formRationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator.You must remember that a complex number times its conjugate will give a real number.a complex number 2+2i. the conjugate to this is 2-i1. Multiply both together gives a real number.(2+2i)(2-2i) = 4 -4i + 4i + (-4i2) (and as i2 = -1) = 8To divide a complex number by a real number simply divide the real parts by the divisor.(8+4i)/2 = (4+2i)To divide a real number by a complex number.1. make a fraction of the expression 8/(2+2i)2. multiply by 1. express 1 as a fraction of the divisor's conjunction. 8/(2+2i)*(2-2i)/(2-2i)3. multiply numerator by numerator and denominator by denominator.(16-16i)/84. and simplify 2-2i
(1+i)3 = 1 + 3i - 3 - i = -2 + 2i This is a complex number, and therefore cannot be plotted on a Cartesian plane.
Multiply the numerator and denominator by the complex conjugate of the denominator ... [ root(2) minus i ]. This process is called 'rationalizing the denominator'.
The conjugate of a complex number can be found by multiplying the imaginary part by -1, then adding the "real" part back. (-2i) * -1 = 2i, so the conjugation is 7+2i
Using the quadratic formula, you get the complex answers of 1 + 2i and 1 - 2i
It is 3 minus 2i
the magnitude of a complex number is the square root of the sum of the squares of the real and imaginary parts. so......... (4+9)^.5 = ~3.6 and also (9+4)^.5 = ~3.6 so they are both the same.
It is 3/13 - 2/13*i
When dividing complex numbers you must:Write the problem in fractional formRationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator.You must remember that a complex number times its conjugate will give a real number.a complex number 2+2i. the conjugate to this is 2-i1. Multiply both together gives a real number.(2+2i)(2-2i) = 4 -4i + 4i + (-4i2) (and as i2 = -1) = 8To divide a complex number by a real number simply divide the real parts by the divisor.(8+4i)/2 = (4+2i)To divide a real number by a complex number.1. make a fraction of the expression 8/(2+2i)2. multiply by 1. express 1 as a fraction of the divisor's conjunction. 8/(2+2i)*(2-2i)/(2-2i)3. multiply numerator by numerator and denominator by denominator.(16-16i)/84. and simplify 2-2i
(1+i)3 = 1 + 3i - 3 - i = -2 + 2i This is a complex number, and therefore cannot be plotted on a Cartesian plane.
Multiply the numerator and denominator by the complex conjugate of the denominator ... [ root(2) minus i ]. This process is called 'rationalizing the denominator'.
The same as for a real number: 1 divided by the number.For example, the multiplicative inverse (or reciprocal) of 2i is 1 / 2i = -(1/2)i.
The conjugate of a complex number can be found by multiplying the imaginary part by -1, then adding the "real" part back. (-2i) * -1 = 2i, so the conjugation is 7+2i
It is 0. The number is wholly imaginary.
no even exponent of a real number can ever result in a negative number. If x is a complex number with the real and imaginary part having the same magnitude, then taking that to the fourth power will result in a real number, which is negative.Example: (2 + 2i)4, or (-2 + 2i)4, or (2 - 2i)4, or (-2 - 2i)4, Just take (2 - 2i)4, as one to see how it works. First take (2 - 2i)2, then we'll square that result.(2 - 2i)2 = 4 - 4i - 4i + 4i2 , but i2 is -1, so we have -8i, then square that is 64i2 which is -64.
3+2i + 6-4i = 9-2i The real part of this number is positive, therefore it lies in Q1 or Q4. The imaginary part is negative, therefore it is in Q3 or Q4. Q4 is the common possibility, therefore 9-2i is in Q4.
Using the quadratic formula, you get the complex answers of 1 + 2i and 1 - 2i