the (n-1)th term plus the (n-2)th term.
Let n (i) = the term number of each term in the sequence., with (i) going from 1-6 E.g term number 1 (n (1) ) is 3. n(2)= -7 etc... Therefore n(i) for odd terms in the sequence is n (i)= (n (i -2)th term +1). For even terms in the sequence, n(i)= (n (i - 2)th term -3).
2,1,0 is th sequence of its terms
Use the following formula: an = a1 + (n - 1)d, where a1 = the first term n = the n th term (general term) d = common difference (which is constant between terms) Since we need to find the 14 th term, we can write: a1 = 100 n = 14 d = -4 an = a1 + (n - 1)d a14 = 100 + (14 - 1)(-4) a14 = 100 + (13)(-4) a14 = 100 - 52 a14 = 48 Thus, the 14 th term is 48.
This is the Fibonacci sequence, where the number is the sum of the two preceding numbers. The nth term is the (n-1)th term added to (n-2)th term
The answer depends on what the explicit rule is!
the (n-1)th term plus the (n-2)th term.
-13
Let n (i) = the term number of each term in the sequence., with (i) going from 1-6 E.g term number 1 (n (1) ) is 3. n(2)= -7 etc... Therefore n(i) for odd terms in the sequence is n (i)= (n (i -2)th term +1). For even terms in the sequence, n(i)= (n (i - 2)th term -3).
2,1,0 is th sequence of its terms
Use the following formula: an = a1 + (n - 1)d, where a1 = the first term n = the n th term (general term) d = common difference (which is constant between terms) Since we need to find the 14 th term, we can write: a1 = 100 n = 14 d = -4 an = a1 + (n - 1)d a14 = 100 + (14 - 1)(-4) a14 = 100 + (13)(-4) a14 = 100 - 52 a14 = 48 Thus, the 14 th term is 48.
To find the nth term in this sequence, we first need to determine the pattern. The differences between consecutive terms are 5, 7, 9, and 11 respectively. These differences are increasing by 2 each time. This indicates that the sequence is following a quadratic pattern. The nth term for this sequence can be found using the formula for the nth term of a quadratic sequence, which is Tn = an^2 + bn + c.
This is the Fibonacci sequence, where the number is the sum of the two preceding numbers. The nth term is the (n-1)th term added to (n-2)th term
It is 5n+2 and so the next number is 22
The counting sequence is making increments of 11,that is, the n-th term will = 11 x nn = 12,t = 12 x 11= 132
10 - 52 = -15
Each number is twice the previous number.