The given sequence is decreasing by 2 each time, so the pattern is -2. To find the nth term, we can use the formula for the nth term of an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, the first term (a_1 = 11), the common difference (d = -2), and we want to find the nth term. So, the nth term formula becomes (a_n = 11 + (n-1)(-2) = 13 - 2n).
Chat with our AI personalities
Oh, dude, it's like a pattern party! So, to find the nth term for this sequence, you first need to figure out the pattern. Looks like each number is decreasing by 2. So, the nth term would be 13 - 2n. Easy peasy, right?
It is: nth term = 5-4n and so the next term will be -19
If you mean -1 3 7 11 15 then the nth term is 4n-5 and so the next term will be 19
If you mean: 15 11 7 3 then the nth term is 19-4n
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.
Un = (-1)n*(2n - 1)