The simplest rule is
Un = 26 - 8n for n = 1, 2, 3, ...
but it is always possible to fit a polynomial of degree 5 to the given sequence of numbers along with any sixth number.
They are: nth term = 6n-4 and the 14th term is 80
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
t(n) = (-5n4 + 62n3 - 247n2 + 334n - 36)/6
To find the nth term of the sequence -2, -8, -18, -32, -50, we first observe the differences between consecutive terms: -6, -10, -14, -18. The second differences (which are constant at -4) suggest that the nth term can be represented by a quadratic function. The general form is ( a_n = An^2 + Bn + C ). Solving for coefficients A, B, and C using the first few terms gives the nth term as ( a_n = -2n^2 + n ).
To find the nth term of the sequence 11, 21, 35, 53, 75, 101, we can observe the differences between consecutive terms: 10, 14, 18, 22, and 26, which increase by 4 each time. This suggests that the sequence can be described by a quadratic function. The nth term can be represented as ( a_n = 5n^2 + 6n ), where n starts from 1. Thus, the nth term corresponds to this formula for values of n.
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
The given sequence (7, 14, 21, 28, 35,....) is an arithmetic sequence where each term increases by 7. The nth term of the given sequence is 7n
They are: nth term = 6n-4 and the 14th term is 80
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
Tn = 10 + n2
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
It is: nth term = -4n+14
Oh, dude, you're hitting me with the math questions, huh? So, the formula for finding the nth term of an arithmetic sequence is a + (n-1)d, where a is the first term and d is the common difference. In this sequence, the common difference is 8 (because each term increases by 8), and the first term is 14. So, the formula for the nth term would be 14 + 8(n-1). You're welcome.
Clearly here the nth term isn't n25.
This is an arithmetic sequence which starts at 14, a = 14, and with a common difference of -1, d = -1. We can use the nth term formula an = a + (n - 1)d to get an = 14 + (n - 1)(-1) = 14 - n + 1 = 15 - n.
t(n) = (-5n4 + 62n3 - 247n2 + 334n - 36)/6
The nth term is: 3n+2 and so the next number will be 20