The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).
To find the nth term formula for the sequence -4, -1, 4, 11, 20, 31, we first observe the differences between consecutive terms: 3, 5, 7, 9, 11, which are increasing by 2. This indicates a quadratic relationship. The nth term formula can be derived as ( a_n = n^2 + n - 4 ).
To find the nth term of this sequence, we first need to identify the pattern. The differences between consecutive terms are 5, 9, 13, 17, and so on. These are increasing by 4 each time. This means that the nth term can be calculated using the formula n^2 + 4n + 1. So, the nth term for the sequence 5, 10, 19, 32, 49 is n^2 + 4n + 1.
tn = n2
It is: 2n+4
The sequence 8, 6, 4, 2, 0 is an arithmetic sequence with a common difference of -2. The first term (a) is 8, and the common difference (d) is -2. The nth term can be expressed using the formula: ( T_n = a + (n-1)d ). Thus, the nth term is given by ( T_n = 8 + (n-1)(-2) = 10 - 2n ).
The nth term of the sequence is expressed by the formula 8n - 4.
13 n 5
Tn = 1 + 3n
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.
the first 4 terms of the sequence which has the nth term is a sequence of numbers that that goe together eg. 8,12,16,20,24 the nth term would be 4n+4
The nth term is (2n - 12).
Formula for nth termTn = a + (4n - 1) {where a is the first term and n is natural number}
To find the nth term formula for the sequence -4, -1, 4, 11, 20, 31, we first observe the differences between consecutive terms: 3, 5, 7, 9, 11, which are increasing by 2. This indicates a quadratic relationship. The nth term formula can be derived as ( a_n = n^2 + n - 4 ).
The nth term is: 3n+1 and so the next number will be 16
To find the nth term of this sequence, we first need to identify the pattern. The differences between consecutive terms are 5, 9, 13, 17, and so on. These are increasing by 4 each time. This means that the nth term can be calculated using the formula n^2 + 4n + 1. So, the nth term for the sequence 5, 10, 19, 32, 49 is n^2 + 4n + 1.
tn = n2
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).