Strangely enough, it is 9n + 1 for n = 1, 2, 3, ...
It is: nth term = 35-9n
To determine the nth term of the sequence 25, 16, 7, we first identify the pattern. The sequence appears to be decreasing by 9, then by 9 again, suggesting a consistent difference. This leads to a formula for the nth term: ( a_n = 34 - 9n ), where ( a_1 = 25 ) for n=1. Thus, the nth term can be expressed as ( a_n = 34 - 9n ).
Un = 29 - 9n
37 - 9n
14+9n
It is: nth term = 35-9n
To determine the nth term of the sequence 25, 16, 7, we first identify the pattern. The sequence appears to be decreasing by 9, then by 9 again, suggesting a consistent difference. This leads to a formula for the nth term: ( a_n = 34 - 9n ), where ( a_1 = 25 ) for n=1. Thus, the nth term can be expressed as ( a_n = 34 - 9n ).
Un = 29 - 9n
nth term is 9n-3 and so the next term will be 42
The sequence 18, 27, 36, 45, 54 is an arithmetic sequence where each term increases by 9. To find the nth term, you can use the formula for the nth term of an arithmetic sequence: ( a_n = a_1 + (n-1)d ), where ( a_1 ) is the first term (18) and ( d ) is the common difference (9). Thus, the nth term is ( a_n = 18 + (n-1) \times 9 = 9n + 9 ).
The nth term is 9n-2
14+9n
37 - 9n
> since the value rises by nine at each step and the first term is 12 the formula for > the nth term is: 12+(n-1)*9 Which simplifies to Sn = 9n + 3
The nth term = 9n-2
It is: 9n+5 and so the next term is 50
t(n) = 28 - 9n