We can't answer that without knowing what else is in the bowl.
To determine the probability of getting a green marble, you need to know the total number of marbles and the number of green marbles specifically. The probability is calculated by dividing the number of green marbles by the total number of marbles. For example, if there are 5 green marbles out of 20 total marbles, the probability would be 5/20, which simplifies to 1/4 or 25%.
To calculate the probability of not drawing a green marble, first determine the total number of marbles and the number of green marbles. The probability of not drawing a green marble is then given by the ratio of the number of non-green marbles to the total number of marbles. This can be expressed as: [ P(\text{not green}) = \frac{\text{Number of non-green marbles}}{\text{Total number of marbles}}. ] Without specific numbers, the exact probability cannot be computed.
To find the probability that a blue marble will NOT be selected, first calculate the total number of marbles: 9 red + 6 blue + 7 green + 11 yellow = 33 marbles. The number of non-blue marbles is 9 red + 7 green + 11 yellow = 27 marbles. Therefore, the probability of NOT selecting a blue marble is 27/33, which simplifies to 9/11.
it is 6/9 simplifyyou get 2/3.
The probability of choosing a green marble from this jar would be 6/15. You get this answer by adding up the sum of all the marbles.
1
The probability is 0.56
To determine the probability of getting a green marble, you need to know the total number of marbles and the number of green marbles specifically. The probability is calculated by dividing the number of green marbles by the total number of marbles. For example, if there are 5 green marbles out of 20 total marbles, the probability would be 5/20, which simplifies to 1/4 or 25%.
0No blue marbles in the bag.
To calculate the probability of not drawing a green marble, first determine the total number of marbles and the number of green marbles. The probability of not drawing a green marble is then given by the ratio of the number of non-green marbles to the total number of marbles. This can be expressed as: [ P(\text{not green}) = \frac{\text{Number of non-green marbles}}{\text{Total number of marbles}}. ] Without specific numbers, the exact probability cannot be computed.
The theoretical probability of randomly drawing a green marble can be calculated by dividing the number of green marbles by the total number of marbles in the bag. In this case, there are 12 green marbles out of a total of 5 red marbles + 8 blue marbles + 12 green marbles, which is 25 marbles in total. Therefore, the theoretical probability of drawing a green marble is 12/25 or 48%.
To find the probability that a blue marble will NOT be selected, first calculate the total number of marbles: 9 red + 6 blue + 7 green + 11 yellow = 33 marbles. The number of non-blue marbles is 9 red + 7 green + 11 yellow = 27 marbles. Therefore, the probability of NOT selecting a blue marble is 27/33, which simplifies to 9/11.
it is 6/9 simplifyyou get 2/3.
Probability = number_of_white_marbles / total_number_of_marbles = 10 / (4 + 6 + 4 + 10) = 10 / 24 = 5/12 ~= 0.42
The probability of choosing a green marble from this jar would be 6/15. You get this answer by adding up the sum of all the marbles.
To find the probability of drawing a marble that is not blue, we first calculate the total number of marbles, which is 5 red + 3 blue + 1 green = 9 marbles. The number of marbles that are not blue is 5 red + 1 green = 6 marbles. Therefore, the probability of drawing a marble that is not blue is 6 out of 9, which simplifies to 2/3.
There are 15 blue marbles, 8 yellow marbles and 27 red marbles for a total of 50 marbles. Since there are no green marbles in the lot, It is impossible to pull a green marble from the lot. The is no probability whatsoever! "There just ain't no green ones to pull."