The quotient in polynomial form refers to the result obtained when one polynomial is divided by another polynomial using polynomial long division or synthetic division. It expresses the division result as a polynomial, which may include a remainder expressed as a fraction of the divisor. The quotient can help simplify expressions and solve polynomial equations. For example, dividing (x^3 + 2x^2 + x + 1) by (x + 1) yields a quotient of (x^2 + x) with a remainder.
When a polynomial is divided by one of its binomial factors, the quotient is called the "reduced polynomial" or simply the "quotient polynomial." This resulting polynomial represents the original polynomial after removing the factor, and it retains the degree that is one less than the original polynomial.
To determine the quotient in polynomial form, we need to perform polynomial long division or synthetic division based on the given coefficients -1, 2, 7, and 5. The options suggest a linear polynomial as the quotient. Without the specific divisor, it is difficult to provide a definitive answer, but the correct quotient can depend on the context of the division. Please provide the divisor for a precise solution.
A rational function is the quotient of two polynomial functions.
To divide the polynomial (2x^2 + 7x + 5) by a linear polynomial, you typically use polynomial long division or synthetic division. However, since you didn't specify a divisor, I'll assume you're asking for the quotient of (2x^2 + 7x + 5) divided by (1), which is simply the polynomial itself: (2x^2 + 7x + 5). If you meant a different divisor, please specify for a more accurate answer.
To get a quotient and a remainder, you would need to do a division, not a multiplication.
When a polynomial is divided by one of its binomial factors, the quotient is called the "reduced polynomial" or simply the "quotient polynomial." This resulting polynomial represents the original polynomial after removing the factor, and it retains the degree that is one less than the original polynomial.
To determine the quotient in polynomial form, we need to perform polynomial long division or synthetic division based on the given coefficients -1, 2, 7, and 5. The options suggest a linear polynomial as the quotient. Without the specific divisor, it is difficult to provide a definitive answer, but the correct quotient can depend on the context of the division. Please provide the divisor for a precise solution.
A rational function is the quotient of two polynomial functions.
To get a quotient and a remainder, you would need to do a division, not a multiplication.
If the quotient of a certain binomial and 20x2 is is the polynomial
That already is a polynomial in standard form.
You can't know if a general polynomial is in factored form.
In video example 36, the process of dividing a polynomial by a binomial is demonstrated using long division. The polynomial is divided term by term, starting with the leading term of the polynomial, and determining how many times the leading term of the binomial fits into it. This is followed by multiplying the entire binomial by that quotient term, subtracting the result from the original polynomial, and repeating the process with the remainder until the polynomial is fully divided. The final result includes both the quotient and any remainder expressed as a fraction.
For example, if you divide a polynomial of degree 2 by a polynomial of degree 1, you'll get a result of degree 1. Similarly, you can divide a polynomial of degree 4 by one of degree 2, a polynomial of degree 6 by one of degree 3, etc.
Assuming that he quadratic is 2x^2 + x - 15, the quotient is 2x - 5.
A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.
Is also a number or polynomial.