This is not a geometric series since -18/54 is not the same as -36/12
Yes, that's what a geometric sequence is about.
A geometric sequence is a sequence where each term is a constant multiple of the preceding term. This constant multiplying factor is called the common ratio and may have any real value. If the common ratio is greater than 0 but less than 1 then this produces a descending geometric sequence. EXAMPLE : Consider the sequence : 12, 6, 3, 1.5, 0.75, 0.375,...... Each term is half the preceding term. The common ratio is therefore ½ The sequence can be written 12, 12(½), 12(½)2, 12(½)3, 12(½)4, 12(½)5,.....
It is neither.
An arithmetic sequence is a series of numbers in which each term is obtained by adding a constant value, called the common difference, to the previous term. In contrast, a geometric sequence is formed by multiplying the previous term by a constant value, known as the common ratio. For example, in the arithmetic sequence 2, 5, 8, 11, the common difference is 3, while in the geometric sequence 3, 6, 12, 24, the common ratio is 2. Thus, the primary difference lies in how each term is generated: through addition for arithmetic and multiplication for geometric sequences.
36
Yes, that's what a geometric sequence is about.
The sequence 216 12 23 is neither arithmetic nor geometric.
A geometric sequence is a sequence where each term is a constant multiple of the preceding term. This constant multiplying factor is called the common ratio and may have any real value. If the common ratio is greater than 0 but less than 1 then this produces a descending geometric sequence. EXAMPLE : Consider the sequence : 12, 6, 3, 1.5, 0.75, 0.375,...... Each term is half the preceding term. The common ratio is therefore ½ The sequence can be written 12, 12(½), 12(½)2, 12(½)3, 12(½)4, 12(½)5,.....
To find the common ratio of a geometric sequence, we divide each term by its preceding term. However, the sequence provided (12, -14, 18, -116) does not exhibit a consistent ratio, as the ratios between consecutive terms are -14/12, 18/-14, and -116/18, which are not equal. Therefore, this sequence is not geometric and does not have a common ratio.
It is neither.
An arithmetic sequence is a series of numbers in which each term is obtained by adding a constant value, called the common difference, to the previous term. In contrast, a geometric sequence is formed by multiplying the previous term by a constant value, known as the common ratio. For example, in the arithmetic sequence 2, 5, 8, 11, the common difference is 3, while in the geometric sequence 3, 6, 12, 24, the common ratio is 2. Thus, the primary difference lies in how each term is generated: through addition for arithmetic and multiplication for geometric sequences.
The ratio is 4.
36
No, geometric, common ratio 2
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.
What is the eighth term of the geometric sequence 3, 12, 48, 192, ... ?
Un = 4*3n-1 S9 = 39364