answersLogoWhite

0

What else can I help you with?

Related Questions

What is the rule for 270 degree counter clockwise rotation?

The effect of the rotation is the same as that of a 90 degree clockwise rotation. In matrix notation, it is equivalent to [post-]multiplication by the 2x2 matrix: { 0 1 } {-1 0 }


What is the symbolic rule for a 45 degree rotation clockwise around the origin?

(x; y) --> (x.cos45 + y.sin45; x.sin45 - y.cos45)


Rule for 90 degree clockwise rotation?

we swap the co-ordinates and give the new y co-ordinate the opposite sign.90 degrees clockwise(y, -x)


What is the rule for a 270 degree clockwise rotation?

(x,y) to (x,-y). You would keep the x the same, but turn the y negative. This is actually the rule for a 90 degree counterclockwise rotation, but they're the same thing, they would go to the same coordinates.


What rule represents a 270 clockwise rotation about the origin?

270 rule represent a 270 rotation to the left which is very easy


How do you find 270 degree clockwise rotation?

(x,y) to (x,-y). You would keep the x the same, but turn the y negative. This is actually the rule for a 90 degree counterclockwise rotation, but they're the same thing, they would go to the same coordinates.


What is the rule for a 90 degree rotation?

plz awnser this


What is the Rotation rule for 180 counter clockwise?

The rotation rule for a 180-degree counterclockwise rotation involves turning a point around the origin (0, 0) by half a circle. For any point (x, y), the new coordinates after this rotation become (-x, -y). This means that both the x and y coordinates are negated. For example, the point (3, 4) would rotate to (-3, -4).


Rule for 180 degree clockwise rotation?

To rotate a figure 180 degrees clockwise, you can achieve this by first reflecting the figure over the y-axis and then reflecting it over the x-axis. This double reflection effectively rotates the figure 180 degrees clockwise around the origin.


What is the rule for a 180 degree counterclockwise rotation?

First of all, if the rotation is 180 degrees then there is no difference clockwise and anti-clockwise so the inclusion of clockwise in the question is redundant. In terms of the coordinate plane, the signs of all coordinates are switched: from + to - and from - to +. So (2, 3) becomes (-2, -3), (-2, 3) becomes (2, -3), (2, -3) becomes (-2, 3) and (-2, -3) becomes (2, 3).


What do you think the mapping rule is for a rotation of 270 degrees clockwise?

It is multiplication by the 2x2 matrix 0 1-1 0


What is the rule for a counterclockwise rotation about the origin of 270?

A counterclockwise rotation of 270 degrees about the origin is equivalent to a clockwise rotation of 90 degrees. To apply this transformation to a point (x, y), you can use the rule: (x, y) transforms to (y, -x). This means that the x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative of the x-coordinate.