Divide the speed by the wavelength. (For any wave, the wavelength times the frequency is equal to the speed of the wave.)
The speed of sound in fresh water is approx 1,500 metres per second. So wavelength = speed/frequency = 2.94 metres.
Any wave. Of you have a wave (light, water etc.), it will have a frequency and a wavelength. Multiply these and you get the speed at which the wave is moving.
speed of a wave = wavelength x frequency = 2.5m x 4Hz = 10m/s
The speed of the wave increases, the frequency remains constant and the wavelength increases. The angle of the wave also changes.
The speed of a water wave is given by the formula: speed = frequency Γ wavelength. With a frequency of 0.5 Hz and a wavelength of M, the speed would be 0.5M units per second.
Divide the speed by the wavelength. (For any wave, the wavelength times the frequency is equal to the speed of the wave.)
To find the wavelength of the water wave, you can use the formula: wavelength = speed / frequency. Plugging in the values given, you get: wavelength = 4.0 m/s / 2.50 Hz = 1.6 meters. Therefore, the wavelength of the water wave is 1.6 meters.
The frequency of a water wave is directly proportional to its speed. This means that as the speed of a water wave increases, its frequency also increases. Conversely, if the speed of the wave decreases, its frequency will also decrease.
The speed of a wave is calculated by the formula speed = frequency * wavelength. Therefore, the speed of the solar signal in water with a frequency of 1000 Hz and a wavelength of 1.5 meters would be 1500 meters per second.
The speed of sound in water is approximately 1482 m/s. To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Thus, the wavelength of a sound with a frequency of 286 Hz traveling through water would be approximately 5.18 meters.
The relationship between wavelength and frequency is inverse. This means that as wavelength increases, frequency decreases, and vice versa. This relationship is defined by the equation: speed of light = wavelength x frequency.
The speed of sound in fresh water is approx 1,500 metres per second. So wavelength = speed/frequency = 2.94 metres.
To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Plugging in the values, wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound traveling through the water is 5 meters.
The speed of the waves can be calculated using the formula: speed = wavelength x frequency. Given the wavelength is 0.4 m and the frequency is 2 Hz, the speed of the waves in water would be 0.8 m/s.
When frequency decreases, the wavelength increases. This is because the speed of a wave remains constant in a given medium (like air or water), so as frequency decreases, the wavelength has to increase in order to maintain that constant speed.
The frequency and wavelength of a water wave are inversely proportional. This means that as the frequency of the wave increases, the wavelength decreases, and vice versa. In other words, higher frequency waves have shorter wavelengths, while lower frequency waves have longer wavelengths.