answersLogoWhite

0


Best Answer

Gay-Lussac's law

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What law states that if the volume of a gas is held constant its pressure and temperature are directly related?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the V T P relationship in chemistry?

PV /T = nR where n is the number of moles of gas and R is the ideal gas constant. if the amount of gas is constant, pressure and volume are inversely related (because they are multiplied) and that product is directly related to the kelvin temperature. Remove any one and the same analysis is true. Ex: if temperature is constant, remove it from the problem and you still PV, a product so pressure and volume are inversely related.


Is boltzman constant same as gas constant?

They are not the same, but related. From Wikipedia (article "gas constant"): " [The gas constant] is equivalent to the Boltzmann constant, but expressed in units of energy (i.e. the pressure-volume product) per temperature increment per mole (rather than energy per temperature increment per particle)".


How is the Loschimidt's number related to the Avogadro's number?

The Loschmidt constant, NL is related to Avogadro's number, NA by the relationship:NL = p0*NA/(R*T0) wherep0 is the pressureT0 is the thermodynamic temperature andR is the gas constant.


Why you use kelivin in calculation instead of celsius and Fahrenheit?

Kelvin has the advantage that it is an absolute temperature scale - it starts from absolute zero. This simplifies several calculations; for example, in an ideal gas, at constant pressure, the volume of the gas is proportional to the absolute temperature. Similarly, calculations related to heat machines are simpler if an absolute temperature scale is used.


If you are to constuct a graph with volume of an horizontal axis and pressure on the vertical axis what will your graph look like?

According to the ideal gas law, pressure times volume is constant. We'll call that constant c. PV=C, P=c/V, so pressure is inversely related to volume, so it would look like the graph y=1/x multiplied by a constant.

Related questions

Which statement is true regarding a fixed quantity of gas at a constant pressure?

At constant pressure the temperature and the volume of a gas are directly related; this the Charle Law.


How does temperature effect a volume air?

Temperature is not directly tied to volume, its related to pressure. Increasing the temperature will increase the pressure--only if volume is held constant. That is were volume and temperature are related, through pressure. However, if you increase the volume it does not change the temperature.


What law states that if the volume of a gas is held constant its pressure and temperature are directly related is whose law?

Charles


What is the relationship between the volume and pressure of a gas when temperature is held constant?

The pressure and volume are related because both are variable of indefinite which means that both are not positive or definite and they tend to vary by the object they are in.


How does temperature effect a volume of air?

As temperature increases, the volume of air also increases because the molecules in the air gain kinetic energy and move further apart. This relationship is described by the ideal gas law, which states that pressure and volume are directly proportional to temperature when the amount of gas and pressure are constant.


How are temperature air pressure related?

If the temperature of a system is increased, but the volume remains constant, the pressure will increase. If Pressure is increased, then temperature will increase. They are directly proportional, as shown by the combined gas law equation, (V1P1)/T1=V2P2/T2


How are pressure volume and temperature of gases related?

Pressure, volume, and temperature of gases are related by Boyle's Law, Charles's Law, and Gay-Lussac's Law. Boyle's Law states that at constant temperature, the pressure of a gas is inversely proportional to its volume. Charles's Law states that at constant pressure, the volume of a gas is directly proportional to its temperature. Gay-Lussac's Law states that at constant volume, the pressure of a gas is directly proportional to its temperature. These relationships can be combined into the Ideal Gas Law: PV = nRT, where P is pressure, V is volume, T is temperature, n is the amount of substance, and R is the gas constant.


What happens to the pressure as the volume changes?

According to Boyle's Law, as the volume of a gas decreases, the pressure increases, and vice versa. This is because the relationship between pressure and volume is inversely proportional when the temperature is held constant.


How are the absolute temperature and volume of a gas at constant pressure related?

The absolute temperature of a gas is directly proportional to its volume when pressure is constant, according to Charles's Law. This means that as temperature increases, the volume of the gas will also increase, and vice versa.


What is Lussac Law?

Lussac's Law states that, at constant volume, the pressure of a gas is directly proportional to its absolute temperature. This means that as the temperature of a gas increases, its pressure will also increase proportionally. Mathematically, the law can be expressed as P1/T1 = P2/T2, where P is pressure and T is temperature.


Charles law states that?

Charles's Law states that the volume of gas is directly proportional to its temperature, assuming pressure remains constant. In other words, as the temperature of a gas increases, its volume will also increase, and vice versa. This relationship can be described by the equation V1/T1 = V2/T2.


When the volume is held constant the relationship between pressure and temperature is?

When volume is held constant, the relationship between pressure and temperature is directly proportional. This is known as Gay-Lussac's Law, which states that the pressure of a gas is directly proportional to its temperature when volume is constant. This means that as temperature increases, pressure also increases, and vice versa.