answersLogoWhite

0

Approximately 99.7% of the data falls within 3 standard deviations of the mean in a normal distribution. This is known as the empirical rule or the 68-95-99.7 rule, which describes how data is distributed in a bell-shaped curve. Specifically, about 68% of the data falls within 1 standard deviation, and about 95% falls within 2 standard deviations of the mean.

User Avatar

AnswerBot

1w ago

What else can I help you with?

Continue Learning about Math & Arithmetic

In a normal distribution what percentage of the data falls within 2 standard deviation of the mean?

In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.


A set of 1000 values has a normal distribution the mean of the data is 120 and the standard deviation is 20 how many values are within one standard deviaiton from the mean?

The Empirical Rule states that 68% of the data falls within 1 standard deviation from the mean. Since 1000 data values are given, take .68*1000 and you have 680 values are within 1 standard deviation from the mean.


What percentage of scores falls between the mean and -2 to 2 standard deviations under the normal curve?

In a normal distribution, approximately 68% of scores fall within one standard deviation of the mean (between -1 and +1 standard deviations). About 95% of scores fall within two standard deviations (between -2 and +2 standard deviations). Therefore, the percentage of scores that falls specifically between the mean and -2 to 2 standard deviations is about 95% minus the 50% that is below the mean, resulting in approximately 45%.


What is the area within the normal curve between -1SD and plus 1 SD?

The area within the normal curve between -1 standard deviation (SD) and +1 SD is approximately 68%. This means that about 68% of the data falls within one standard deviation of the mean in a normal distribution.


When a data set is normally distributed about how much of the data fall within two standard deviations of the mean?

In a normally distributed data set, approximately 95% of the data falls within two standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data falls within one standard deviation and about 99.7% falls within three standard deviations. Therefore, two standard deviations capture a significant majority of the data points.

Related Questions

What percentage of the data falls outside 2 standard deviation of the mean?

4.55% falls outside the mean at 2 standard deviation


What percentage of the data falls outside 1 standard deviation of the mean?

One standard deviation for one side will be 34% of data. So within 1 std. dev. to both sides will be 68% (approximately) .the data falls outside 1 standard deviation of the mean will be 1.00 - 0.68 = 0.32 (32 %)


In a normal distribution what percentage of the data falls within 2 standard deviation of the mean?

In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.


What is the percentage of population with an IQ of 128?

Approximately 6.68% of the population falls within one standard deviation above the mean IQ score of 100, which includes an IQ of 128.


A set of 1000 values has a normal distribution the mean of the data is 120 and the standard deviation is 20 how many values are within one standard deviaiton from the mean?

The Empirical Rule states that 68% of the data falls within 1 standard deviation from the mean. Since 1000 data values are given, take .68*1000 and you have 680 values are within 1 standard deviation from the mean.


What percentage of the area falls below the mean?

The area between the mean and 1 standard deviation above or below the mean is about 0.3413 or 34.13%


What is the area within the normal curve between -1SD and plus 1 SD?

The area within the normal curve between -1 standard deviation (SD) and +1 SD is approximately 68%. This means that about 68% of the data falls within one standard deviation of the mean in a normal distribution.


When a data set is normally distributed about how much of the data fall within two standard deviations of the mean?

In a normally distributed data set, approximately 95% of the data falls within two standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data falls within one standard deviation and about 99.7% falls within three standard deviations. Therefore, two standard deviations capture a significant majority of the data points.


Why is the standard deviation one?

The standard deviation provides in indication of what proportion of the entire distribution of the sample falls within a certain distance from the mean or average for that sample. If your data falls on a normal (or bell shaped) distribution, a SD of 1 indicates that about 68% of your data points (scores or whatever else) fall within 1 point (plus or minus) of the average (mean) of the data, and 95% fall within 2 points.


Given an unknown What percentage of data falls within 0.75 standard deviation of the mean?

In a normal distribution, approximately 57.5% of the data falls within 0.75 standard deviations of the mean. This is derived from the cumulative distribution function (CDF) of the normal distribution, which indicates that about 27.5% of the data lies between the mean and 0.75 standard deviations above it, and an equal amount lies between the mean and 0.75 standard deviations below it. Therefore, when combined, it results in around 57.5% of data being within that range.


What percent of a normal population is within 2 standard deviations of the mean?

In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.


What percentage of the country falls within Norway?

100% of Norway falls within Norway