Approximately 99.7% of the data falls within 3 standard deviations of the mean in a normal distribution. This is known as the empirical rule or the 68-95-99.7 rule, which describes how data is distributed in a bell-shaped curve. Specifically, about 68% of the data falls within 1 standard deviation, and about 95% falls within 2 standard deviations of the mean.
In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.
The Empirical Rule states that 68% of the data falls within 1 standard deviation from the mean. Since 1000 data values are given, take .68*1000 and you have 680 values are within 1 standard deviation from the mean.
In a normal distribution, approximately 68% of scores fall within one standard deviation of the mean (between -1 and +1 standard deviations). About 95% of scores fall within two standard deviations (between -2 and +2 standard deviations). Therefore, the percentage of scores that falls specifically between the mean and -2 to 2 standard deviations is about 95% minus the 50% that is below the mean, resulting in approximately 45%.
The area within the normal curve between -1 standard deviation (SD) and +1 SD is approximately 68%. This means that about 68% of the data falls within one standard deviation of the mean in a normal distribution.
In a normally distributed data set, approximately 95% of the data falls within two standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data falls within one standard deviation and about 99.7% falls within three standard deviations. Therefore, two standard deviations capture a significant majority of the data points.
4.55% falls outside the mean at 2 standard deviation
One standard deviation for one side will be 34% of data. So within 1 std. dev. to both sides will be 68% (approximately) .the data falls outside 1 standard deviation of the mean will be 1.00 - 0.68 = 0.32 (32 %)
In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.
Approximately 6.68% of the population falls within one standard deviation above the mean IQ score of 100, which includes an IQ of 128.
The Empirical Rule states that 68% of the data falls within 1 standard deviation from the mean. Since 1000 data values are given, take .68*1000 and you have 680 values are within 1 standard deviation from the mean.
The area between the mean and 1 standard deviation above or below the mean is about 0.3413 or 34.13%
The area within the normal curve between -1 standard deviation (SD) and +1 SD is approximately 68%. This means that about 68% of the data falls within one standard deviation of the mean in a normal distribution.
In a normally distributed data set, approximately 95% of the data falls within two standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data falls within one standard deviation and about 99.7% falls within three standard deviations. Therefore, two standard deviations capture a significant majority of the data points.
The standard deviation provides in indication of what proportion of the entire distribution of the sample falls within a certain distance from the mean or average for that sample. If your data falls on a normal (or bell shaped) distribution, a SD of 1 indicates that about 68% of your data points (scores or whatever else) fall within 1 point (plus or minus) of the average (mean) of the data, and 95% fall within 2 points.
In a normal distribution, approximately 57.5% of the data falls within 0.75 standard deviations of the mean. This is derived from the cumulative distribution function (CDF) of the normal distribution, which indicates that about 27.5% of the data lies between the mean and 0.75 standard deviations above it, and an equal amount lies between the mean and 0.75 standard deviations below it. Therefore, when combined, it results in around 57.5% of data being within that range.
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
100% of Norway falls within Norway