One standard deviation for one side will be 34% of data. So within 1 std. dev. to both sides will be 68% (approximately) .the data falls outside 1 standard deviation of the mean will be 1.00 - 0.68 = 0.32 (32 %)
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
The standard deviation provides in indication of what proportion of the entire distribution of the sample falls within a certain distance from the mean or average for that sample. If your data falls on a normal (or bell shaped) distribution, a SD of 1 indicates that about 68% of your data points (scores or whatever else) fall within 1 point (plus or minus) of the average (mean) of the data, and 95% fall within 2 points.
The answer will depend on what the distribution is. Non-statisticians often assum that the variable that they are interested in follows the Standard Normal distribution. This assumption must be justified. If that is the case then the answer is 81.9%
Concave quadrilateral.
A median of a triangle is a line segment joining the vertex to the midpoint of the opposite side. The medians ( each triangle has 3) always intersect at a point call the centroid and the centroid is always INSIDE the triangle.APEX: The incenter of a triangle ________ falls outside of its triangle. = neverA median of a triangle may fall outside the triangle? false apex!!!!!!!!
4.55% falls outside the mean at 2 standard deviation
In a normal distribution, approximately 68% of the data falls within one standard deviation of the mean. This means that around 34% of the data lies between the mean and one standard deviation above it, while another 34% lies between the mean and one standard deviation below it.
Approximately 99.7% of the data falls within 3 standard deviations of the mean in a normal distribution. This is known as the empirical rule or the 68-95-99.7 rule, which describes how data is distributed in a bell-shaped curve. Specifically, about 68% of the data falls within 1 standard deviation, and about 95% falls within 2 standard deviations of the mean.
The area between the mean and 1 standard deviation above or below the mean is about 0.3413 or 34.13%
In a normal distribution, approximately 68% of the population falls within one standard deviation of the mean, and about 95% falls within two standard deviations. Therefore, to find the percentage of the population between one standard deviation below the mean and two standard deviations above the mean, you would calculate 95% (within two standard deviations) minus 34% (the portion below one standard deviation), resulting in approximately 61% of the population.
In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.
Approximately 6.68% of the population falls within one standard deviation above the mean IQ score of 100, which includes an IQ of 128.
In a normal distribution, approximately 68% of scores fall within one standard deviation of the mean (between -1 and +1 standard deviations). About 95% of scores fall within two standard deviations (between -2 and +2 standard deviations). Therefore, the percentage of scores that falls specifically between the mean and -2 to 2 standard deviations is about 95% minus the 50% that is below the mean, resulting in approximately 45%.
The answer is about 16% Using the z-score formula(z = (x-u)/sd) the z score is 1. This means that we want the percentage above 1 standard deviation. We know from the 68-95-99.7 rule that 68 percent of all the data fall between -1 and 1 standard deviation so there must be about 16% that falls above 1 standard deviation.
In a normally distributed data set, approximately 68% of the data falls within one standard deviation of the mean. This is part of the empirical rule, which states that about 68% of the data lies within one standard deviation, about 95% within two standard deviations, and about 99.7% within three standard deviations.
The Empirical Rule states that 68% of the data falls within 1 standard deviation from the mean. Since 1000 data values are given, take .68*1000 and you have 680 values are within 1 standard deviation from the mean.
Zero.