what is the recursive formula for this geometric sequence?
A recursive formula for the nth term of a geometric sequence defines each term based on the previous term. It can be expressed as ( a_n = r \cdot a_{n-1} ), where ( a_n ) is the nth term, ( a_{n-1} ) is the previous term, and ( r ) is the common ratio. Additionally, you need an initial term ( a_1 ) to start the sequence, such as ( a_1 = a ), where ( a ) is the first term.
Yes, the explicit rule for a geometric sequence can be defined from a recursive formula. If the first term is 23 and the common ratio is ( r ), the explicit formula can be expressed as ( a_n = 23 \cdot r^{(n-1)} ), where ( a_n ) is the nth term of the sequence. This formula allows you to calculate any term in the sequence directly without referencing the previous term.
Yes, that's what a geometric sequence is about.
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
what is the recursive formula for this geometric sequence?
4, -1236, -108 is not a geometric system.
An example of an infinite geometric sequence is 3, 5, 7, 9, ..., the three dots represent that the number goes on forever.
-7
In an arithmetic sequence the same number (positive or negative) is added to each term to get to the next term.In a geometric sequence the same number (positive or negative) is multiplied into each term to get to the next term.A geometric sequence uses multiplicative and divisive formulas while an arithmetic uses additive and subtractive formulas.
arithmetic sequence * * * * * A recursive formula can produce arithmetic, geometric or other sequences. For example, for n = 1, 2, 3, ...: u0 = 2, un = un-1 + 5 is an arithmetic sequence. u0 = 2, un = un-1 * 5 is a geometric sequence. u0 = 0, un = un-1 + n is the sequence of triangular numbers. u0 = 0, un = un-1 + n(n+1)/2 is the sequence of perfect squares. u0 = 1, u1 = 1, un+1 = un-1 + un is the Fibonacci sequence.
No.
If you want to ask questions about the "following", then I suggest that you make sure that there is something that is following.
Yes, that's what a geometric sequence is about.
true
A geometric series represents the partial sums of a geometric sequence. The nth term in a geometric series with first term a and common ratio r is:T(n) = a(1 - r^n)/(1 - r)
a sequence of shifted geometric numbers