As the force of gravity increases the period would decrease.
So shortest period on the sun (if you can keep it intact), then sea level, then mountain top and then moon.
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
It's faster at sea level and slower at the top of a mountain.
time period of simple pendulum is dirctly proportional to sqare root of length...
wind resistance cannot be ignored in considering a simple pendulum. The wind resistance will be proportional to a higher power of the velocity of the pendulum. A small arc of the pendulum will lessen this effect. You could demonstrate this effect for yourself. A piece of paper attached to the pendulum will add to the wind resistance, and you can measure the period both with and without the paper.
The period increases - by a factor of sqrt(2).
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
It's faster at sea level and slower at the top of a mountain.
The time period of a simple pendulum at the center of the Earth would be constant and not depend on the length of the pendulum. This is because acceleration due to gravity is zero at the center of the Earth, making the time period independent of the length of the pendulum.
The time period of a simple pendulum is not affected by changes in amplitude. However, if the mass is doubled, the time period will increase because it is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
No, the amplitude of a pendulum (the maximum angle it swings from the vertical) does not affect the period (time taken to complete one full swing) of the pendulum. The period of a pendulum depends only on its length and the acceleration due to gravity.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
The period increases as the square root of the length.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The equation for the period (T) of a simple pendulum is T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity.
The physical parameters that might influence the period of a simple pendulum are the length of the pendulum, the acceleration due to gravity, and the mass of the pendulum bob. A longer pendulum will have a longer period, while a higher acceleration due to gravity or a heavier pendulum bob will result in a shorter period.
time period of simple pendulum is dirctly proportional to sqare root of length...
wind resistance cannot be ignored in considering a simple pendulum. The wind resistance will be proportional to a higher power of the velocity of the pendulum. A small arc of the pendulum will lessen this effect. You could demonstrate this effect for yourself. A piece of paper attached to the pendulum will add to the wind resistance, and you can measure the period both with and without the paper.