It's faster at sea level and slower at the top of a mountain.
As the force of gravity increases the period would decrease. So shortest period on the sun (if you can keep it intact), then sea level, then mountain top and then moon.
ts period will become sqrt(2) times as long.
time period of simple pendulum is dirctly proportional to sqare root of length...
The period increases - by a factor of sqrt(2).
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
The time period of a simple pendulum is not affected by the mass of the bob, as long as the amplitude of the swing remains small. So, doubling the mass of the bob will not change the time period of the pendulum.
As the force of gravity increases the period would decrease. So shortest period on the sun (if you can keep it intact), then sea level, then mountain top and then moon.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
ts period will become sqrt(2) times as long.
The period increases as the square root of the length.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The equation for the period (T) of a simple pendulum is T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity.
Acceleration due to gravity affects the time period of a simple pendulum by increasing the speed at which the pendulum swings back and forth. A higher acceleration due to gravity results in a shorter time period for the pendulum to complete one full swing. This relationship is described by the formula T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
The physical parameters that might influence the period of a simple pendulum are the length of the pendulum, the acceleration due to gravity, and the mass of the pendulum bob. A longer pendulum will have a longer period, while a higher acceleration due to gravity or a heavier pendulum bob will result in a shorter period.
time period of simple pendulum is dirctly proportional to sqare root of length...
For a simple pendulum: Period = 6.3437 (rounded) seconds
The period increases - by a factor of sqrt(2).