No. Only when you divide by a negative.
u only reverse the sign when u multiply or divide by a NEGATIVE number...otherwise u don't change the direction
The relation = , is less than, is greater than inequality sign
You only need to reverse the order of the inequality when multiplying or dividing both sides by a negative number. If you multiply or divide by a positive number, the order of the inequality remains the same. This is crucial to maintain the truth of the inequality. Always be cautious about the sign of the number you are using in these operations.
Yes you do, you also flip the inequality sign if you multiply by a negative # The > and < signs are strictly the "Greater than" and "Less than" signs. The inequality sign is an = with a / stroke through it. If you divide an inequality by -1 it remains an inequality.
No, the process is exactly the same. However, when you multiply or divide, you must be careful: if you multiply or divide by a negative number, the direction of the inequality must be changed, for example: -x + 3 > 15 (multiply by -1) x - 3 < -15
The inequality symbol doesn't change direction in this case.Note that that is the same as adding a positive number.Note also that if you MULTIPLY or DIVIDE by a negative number, then you need to change the direction of the inequality symbol.
You divide as normal BUT you change the direction of the inequality symbol, so that < becomes > and conversely.
Change the direction of the inequality.
u only reverse the sign when u multiply or divide by a NEGATIVE number...otherwise u don't change the direction
Sample response: Both inequalities use the division property to isolate the variable, y. When you divide by a negative number, like –7, you must reverse the direction of the inequality sign. When you divide by a positive number, like 7, the inequality sign stays the same. The solution to the first inequality is y > -23, and the solution to the second inequality is y
Most of the steps are the same. The main difference is that if you multiply or divide both sides of an inequality by a NEGATIVE number, you must change the direction of the inequality sign (for example, change "less than" to "greater than").
The inequality sign changes direction. So 2<3 Multiply by -2 and you get -4>-6 (similarly with division).
The direction of the inequality remains unchanged. The direction changes when you divide or multiply both sides by a negative number. It also changes if both sides are raised to a negative exponent.
The difference is that instead of the sign "=", an inequality sign, for example "<" (less-than) is used. For solving inequalities, you can add, subtract, multiply or divide both sides by the same number, similar to an equation; however, if you multiply or divide by a negative number, the direction of the inequality changes. For example, "<" becomes ">".
The relation = , is less than, is greater than inequality sign
You divide the negative number by a positive number for it to stay positive. And you divide the negative number by a negative number for it to become positive.
Let us look at an example. Here is an inequality: 3 is greater than 2.We write this as: 3 > 2.Now let us divide both numbers by a negative number. Let us divide by -1 to keep things as simple as possible.3/-1 = -32/-1 = -2So now the sign of the inequality must be reversed:-3 < -2.-3 is smaller than -2 and so the sign was reversed to show this. This holds true for any example we can think of.Why is this so?If we were to divide two numbers by a positive number then we would not need to change the sign of the inequality. 4 > 2. (divide by 2) 2 > 1.However, when we divide a positive number by a negative the result is always negative. A number that was higher when positive will be lower when negative.Think of a number as representing the distance from 0.4 is further away from 0 than 3 is. When the distance is greater in a positive way then the number is larger. However when the difference is greater in a negative way, such as with -4 and -3 (-4 is further away from 0) then the number is smaller.This is what happens when we divide by a negative number and so the inequality sign must be reversed to show this.