Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.
There are no operators between x and the following constant terms.
A system of equations will intersect at exactly one point if the equations represent two lines that are neither parallel nor coincident, meaning they have different slopes. In this case, there is a unique solution to the system. If the lines are parallel, they will not intersect at all, and if they are coincident, they will intersect at infinitely many points.
Where the lines intersect that gives the values for x and y in the two equations. The lines should intersect at (1, -3) because x = 1 and y = -3
-2
Yes, a system of linear equations can have zero solutions, which is known as an inconsistent system. This occurs when the equations represent parallel lines that never intersect, meaning there is no point that satisfies all equations simultaneously. A common example is the system represented by the equations (y = 2x + 1) and (y = 2x - 3), which are parallel and thus have no solutions.
Those two statements are linear equations, not lines. If the equations are graphed, each one produces a straight line. The lines intersect at the point (-1, -2).
Sometimes. Not always.
first get both your equations into standard form... x + 2y = 9 (equation 1) x + 2y = 13 (equation 2) multiply equation 1 by (-1) -x - 2y = -9 x + 2y = 13 add the equations together 0 + 0 = 4 0 = 4 since the equations dont equal out then these equations do not intersect and are therefore parallel. PARALLEL is your answer
Where the lines intersect that gives the values for x and y in the two equations. The lines should intersect at (1, -3) because x = 1 and y = -3
-2
If it is a linear system, then it could have either 1 solution, no solutions, or infinite solutions. To understand this, think of two lines (consider a plane which is just 2 dimensional - this represents 2 variables and 2 equations, but the idea can be extended to more dimensions).If the 2 lines intersect at a point, then that point represents a solution. If the lines are parallel, then they never intersect, and there is no solution. If the equations are such that they are just different ways of describing the same line, then they intersect at every point, so there are infinite solutions. If you have more than 2 lines then maybe some of them will intersect, but this is not a solution for the whole system. If all lines intersect at a single point, then that is the single solution for the whole system.If you have equations that describe something other than a straight line, then it's possible that they may intersect in more than one point.
2
A linear system is a set of equations where each equation is linear, meaning it involves variables raised to the power of 1. Solving a linear system involves finding values for the variables that satisfy all the equations simultaneously. This process is used to find solutions to equations with multiple variables by determining where the equations intersect or overlap.
Yes, a system of linear equations can have zero solutions, which is known as an inconsistent system. This occurs when the equations represent parallel lines that never intersect, meaning there is no point that satisfies all equations simultaneously. A common example is the system represented by the equations (y = 2x + 1) and (y = 2x - 3), which are parallel and thus have no solutions.
Those two statements are linear equations, not lines. If the equations are graphed, each one produces a straight line. The lines intersect at the point (-1, -2).
y = x - 1 y - x = 3 y = x - 1 y = x + 3 Since both equations represent straight lines that have equal slopes, 1, then the lines are parallel to each other. That is that the lines do not intersect, and the system of the equations does not have a solution.
They intersect at points (-2/3, 19/9) and (3/2, 5) Solved by combining the two equations together to equal nought and then using the quadratic equation formula to find the values of x and substituting these values into the equations to find the values of y.
they intersect at point (1,-2)